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Abstract

Fractal dimension has been recognized for a long time as a useful parameter for shape characterisation. However, the use
of the fractals concept requires the visual inspection of the Richardson plot which hampers the practical applications. In this
paper a fully automatical method for the analysis of the Richardson plot is described. A clustering approach is adopted in-
stead of the visual inspection of Richardson plot. Cases which explain the application of the method are examined.
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1. Introduction

The concept of fractals was originally introduced
in one of the earlier papers by Mandelbrot [1] in
which he tried to resolve the paradox encountered by
Richardson in his attempt to answer the question
‘how long is the coastline of Great Britain’. The an-
swer to this question essentially seems to depend on
the yardstick used to measure the length of the coast-
line. Richardson observed that if the measured coast-
line was plotted against the size of the yardstick, A,
using logarithmic axes (Richardson plot), the result
was a straight line. Furthermore, the slope of the line
was different for different boundaries. More irregular
coastlines as judged by human observers always re-
sult in a line with a higher slope. The slope is nega-
tive, since the largest value for the coastline length is
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obtained with the shortest yardstick. The magnitude
of the slope of the line is between zero and one. The
fractal dimension of the coastline is just this magni-
tude plus 1, the topological dimension of a line.

This concept was found to be useful to determine
the fractal dimension of not only the coastlines, but
also of different natural objects: aerosol particles, bi-
ological cells, etc. It was shown (see, e.g. [2]) that for
a variety of objects at various magnifications the data
did not follow the ideal straight line (single fractal)
expected for a (true) fractal. Practically in all cases
the data on a Richardson plot can be satisfactorily
explained as two straight line segments having dif-
ferent slopes (bifractals or, in general, multifractals).
Kaye’s description of the two line segments of the
Richardson plots uses the terms ‘structural’ and
‘textural’ for the two different regions. At fine scales
a ‘textural’ dimension is given by the slope of the line
at small values of A, while at large scale the ‘struct-
ural’ characteristics of the object emerge.
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When a Richardson plot has been constructed
(various techniques can be found in [2,3]) it is neces-
sary to fit a straight line to the data to determine the
slope (or slopes in the case of a multifractal) and
hence the fractal dimension(s). The main difficulty is
that, as it has been pointed by Mandelbrot, in the real
world any fractal description of a natural boundary
would have inspection limits. It means that fractality
of a real object can be observed only within some
limited intervals of the yardstick sizes. However, it is
not always evident where the best straight line seg-
ment(s) on the graph occur. Moreover some multi-
fractal objects may show continuous gradients of
fractal change [4] and it is not easy to determine
where the best breakpoint between two straight lines
of the graph is. There are no criteria proposed up to
date for preferable breakpoint selection in such cases.
Up to our knowledge the straight line segment of a
Richardson plot is mainly detected by visual inspec-
tion [4—7]. Obviously, this visual line fitting can lcad
to problems. Here we propose a method which elimi-
nates these difficulties and reveals the correct fractal
dimension(s) without visual inspection of a Richard-
son plot. This procedure allows to fully automate the
determination of the fractal dimension. Such automa-
tion is important in, e.g., electron microscopic inves-
tigation of microscopic particles. In environmental
research, the composition and shape of hundreds or
thousands of atmospheric aerosol particles are deter-
mined. Their fractal dimension, together with their
chemical composition is used to identify the particles
and to assign them to possible sources [7].

2. Theory

The fractal dimension(s) of an object is (are) de-
termined from its digital image (e.g. as obtained with
a scanning electron microscope). The object is dis-
criminated from the background by converting the
original grey level image into a binary image. Next
the contour of the object is obtained using a classical
boundary following technique [7], resulting in a set of
contour points {x,, y;}.

2.1. Construction of the Richardson plot

Construction of the Richardson plot involves the
determination of the perimeter of the object for vari-
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Fig. 1. (a) The triadic Koch island after 5 iterations with theoreti-
cal fractal dimension log 4/log 3= 1.2618...; (b) corresponding
Richardson plot (here and in the next figures yardstick and
perimeter are shown in fractions of the maximum Feret diameter);
(c) the frequency histogram, obtained from the Richardson plot
shown (k = 4, o = 0.01). Its maximum corresponds to a fractal di-
mension of 1.27.

ous lengths of the yardstick X. In the Richardson plot
the logarithm of the perimeter is plotted against the
logarithm of the yardstick length (Fig. 1b).

For a given yardstick size A, the perimeter of the
object is determined as follows. Starting at some ar-
bitrary contour point (x,, y,) the next point on the
contour (x,, y,) in clockvge direction is located
which has distance d; = y(x, — )+ (0, =)
as close as possible to A. This point is then used to
locate the next point on the contour that satisfies this
condition. The process is repeated until the distance
between the last located point and the starting point
is less than A. The perimeter is the sum of all dis-
tances d; including the distance between the last lo-
cated point and the starting point. This method is re-
ferred to as the ‘hybrid’ method and is discussed in
detail in [8].

The length of the yardstick A usually varies be-
tween 0.001 and 0.5 times the maximum Feret diam-
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eter of the object. The maximum Feret diameter is
defined as the largest distance between two points of
the object.

2.2. Automatic extraction of the fractal dimension(s)

Once the Richardson plot has been constructed we
have n points (x;, y;) where x represents the yard-
stick length X\, y the perimeter and » the number of
data points in the Richardson plot. The statement that
there exists a straight line which fits a certain subset
of the points implies that there exists a certain inher-
ent structure. The question is then how to reveal this
structure. One possible way is to apply a multivariate
analysis technique such as cluster analysis (CA), spe-
cially intended to solve such types of problems.
However, in order to directly apply CA to this spe-
cific case, the problem should be reformulated as fol-
lows. Let us, instead of all » points in the plane,
consider all possible straight lines each of which fits
any ordered subset of m points from left to right in
the plane (m==k, k+1,..., n, where k is certain
lower limit). Each of these lines is characterised by
its slope a and intercept b. The best fit values of a
and b in the least squares sense are calculated as [3]:
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From the point of view of determining the fractal di-
mension only slope « is of interest. However, the
computation of the expected error in the slope
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involves the calculation of the intercepts too. For the
purpose of this application it is logical to consider
only those straight lines which have slopes in the in-
terval — 1 and 0. Furthermore we restrict ourselves to
lines with slope errors o not exceeding a certain
threshold. This results finally in a one-dimensional set
containing all possible slopes. The problem of find-
ing the underlying structure through clustering can
now be solved via constructing the frequency his-
togram. The maxima in the histogram show the most
populated cluster(s) which correspond to the most
appropriate fractal dimension(s).

3. Results and discussion

As a first example let us consider the problem of
determining the fractal dimension of the triadic Koch
island (Fig. 1a) with theoretical fractal dimension log
4/log 3 = 1.2618... [9]. The Richardson plot was
constructed (Fig. 1b) by the method briefly described
in the theoretical section. The frequency histogram of
all possible slopes, calculated as described above
(here and in the following examples k = 4, o < 0.01)
is shown in Fig. lc. The maximum of the histogram
is reached at |al = 0.27 which corresponds to the
fractal dimension of 1.27 which is in good agreement
with the theoretical value.

The book by Mandelbrot [10] contains many ex-
amples of the artificial islands having various fractal
dimensions. Some of them were analysed by the pre-
sent method and the following results were obtained.
For the smoother Koch island (plate 46 from [10])
having theoretical fractal dimension log 3 /log 7 =
1.1291... the value 1.14 was obtained. A quadric
Koch island (plate 49) was constructed with theoreti-
cal fractal dimension 1.5. As the result of analysis by
the present method the value of 1.48 was obtained.
Finally, a circle (Fig. 2a), which is known to be a
non-fractal object in Euclidean geometry, was also
analysed. The frequency histogram (Fig. 2c), ob-
tained from the corresponding Richardson plot (Fig.
2b), shows a fractal dimension of 1.01 (4 0.01) which
actually means the absence of fractality.

An agglomerate (Fig. 3a) similar to one of the
oldest well known objects with multifractal proper-
ties, the Medalia’s carbonblack profile [11], was gen-
erated and analysed in order to check the applicabil-
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Fig. 2. (a) A non-fractal object (a circle); (b) corresponding
Richardson plot; (c) the frequency histogram, obtained from the
Richardson plot shown (k = 4, ¢ = 0.01).

ity of the method for characterising complex multi-
fractal objects. The frequency histogram (Fig. 3c)
shows a global maximum which reveals a fractal di-
mension of 1.17. More thorough analysis of the fre-
quency histogram discloses two local maxima which
correspond to fractal dimensions of 1.08 and 1.13.

Table 1
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Fig. 3. (a) A synthetic agglomerate profile created from the set of
circles (similar to the carbonblack profile); (b) corresponding
Richardson plot; (c) the frequency histogram (k = 4, o= 0.01).

The visual inspection of the Richardson plot (Fig. 3b)
shows the two distinct lines (as predicted by our
method) which correspond to fractal dimensions of
1.08 (textural) and 1.17 (structural). The value of 1.13
is an average of the textural and structural fractals,
measured over the interval X = 0.01 to A = 0.20 (see

Known fractal dimensions and value obtained by the present method for some artificially generated and real objects. Here ‘known’ means

‘theoretical’ or ‘from literature’

Single fractals

Known fractal dimension

Fractal dimension obtained
by the present method

Circle (Fig. 2a) 1 (non-fractal) 1.01 £0.01

Smoother Koch island [10] 1.1291... 1.14 + 0.01

Triadic Koch island (Fig. 1a) 1.2618... 1.27 £ 0.01

Quadric Koch island [10] 1.5 1.48 +£0.01

Coast of Great Britain [14] ca. 1.3 1.32 +0.01

Algae cell (Fig. 4a) - 1.04 + 0.01

Multifractals Textural Structural Textural Structural
Medalia’s carbonblack profile {11] 1.10 1.32 1.13 £ 0.01 1.32 + 0.01
Artificially generated carbonblack profile (Fig. 3a) - - 1.08 + 0.01 1.17 £ 0.01
Algae cells agglomerate (Fig. 5a) - - 1.13 £ 0.007 1.39 + 0.01
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Fig. 3b). A similar situation was encountered by
Flook [12] and is discussed in Kaye’s book [2] using
the Medalia’s carbonblack profile as an example.
Kaye shows the presence of both textural (1.10) and
structural (1.32) fractal dimensions and discusses his
early studies [13] of the carbonblack profile where an
overall fractal dimension of 1.18 was obtained as an
averaged. The results of our analysis of the original
Medalia’s carbonblack profile as it appears in [11] are
quite similar to that of Kaye: structural fractal di-
mension of 1.32; textural fractal dimension of 1.13
and average fractal dimension of 1.19. The results of
the discussion are summarised in Table 1 together
with some other examples.

All results shown above have been obtained with
k=4 and o <0.01. It is interesting to inspect the
changes of a frequency histogram vs. & and o. In or-
der to do this two biological examples were used. Fig.
4 and Fig. 5a show scanning electron microscopy
images of individual algae cells and cell agglomer-
ates, respectively. Richardson plots are shown in Fig.
4b and 5b. One straight line on the plot (Fig. 4b) can
be observed corresponding to fractal dimension of
1.04. The Richardson plot for the agglomerate of al-
gae cells (Fig. 5b) shows the two straight lines corre-
sponding to textural 1.13 and structural 1.39 fractal
dimensions. The frequency histograms were obtained
for different values of k (Fig. 4c and Fig. 5¢) and &
(Fig. 4 and Fig. 5d). Both parameters were chosen in
intervals from possible smallest to reasonably large
numerical values. There is no difference in the posi-
tion of the global maxima for different values of k
(Fig. 4c and Fig. 5¢). With increasing k some local
maxima, however, can be lost (Fig. 5c). Thus, the
numerical value of k should be chosen relatively
small in order to obtain a histogram with a lot of de-
tail that can reveal the finest structure in the fractal
object. Differences of the histograms for different o
are evident especially in case of multifractal object
(Fig. 5d). For relatively small values the maximum of
the histogram corresponds to textural fractal dimen-
sion. Starting from certain larger values the maxi-
mum corresponds to the structural one (Fig. 5d). So,
if a relatively small value of o was chosen the textu-
ral fractal dimension can be revealed by the global
maximum of a frequency histogram. In the other case
the global maximum corresponds to the structural
fractal dimension. Usually there is no essential influ-
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Fig. 4. (a) An individual algae cell; (b) corresponding Richardson
plot; (c) the frequency histogram for the parameters k = 2, k = 30
and & =90 (o = 0.01); (d) the frequency histogram for the param-
eters o = 0.001, 0 =0.01 and 0 = 0.1 (k=2).

ence of a chosen value of ¢ on the location of the
maximum of the histogram in the cases when only a
single line can be observed on a Richardson plot.
As one can see from Fig. 1b, Fig. 2b, Fig. 3b and
Fig. 4b all perimeter estimations were performed for
rather large intervals of the yardstick sizes until 0.5
of the maximum Feret diameter. Some researchers
consider only intervals until ca. 0.3 [2]. The reason of
using such a large yardstick-sized interval is that there
is no guarantee that the fractal properties of an object
can be observed over the interval up to ca. 0.3 times
the maximum Feret diameter. Fig. 5b shows an ex-
ample where the straight line of Richardson plot is
observed up to ca. 0.4 times the maximum Feret di-
ameter. Until now we never observed fractal proper-
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Fig. 5. (a) An agglomerate of algae cells; (b) corresponding
Richardson plot; (c) the frequency histogram for the parameters
k=2, k=30and k=90 (o =0.01); (d) the frequency histogram
for the parameters ¢ = 0.007, ¢ = 0.01 and o = 0.1 (k =8).

ties of real objects (not theoretical, like Koch curve)
outside the given interval (but this does not mean that
they do not exist). Here we use reasonably large
yardstick-sized intervals which can completely re-
veal a fractal dimension.

4. Conclusion

For all studied examples of theoretical and real
objects we always found a relation between fractal

dimension of an object and a maximum of a corre-
sponding frequency histogram. Depending on a cho-
sen value of ¢ a textural or structural fractal dimen-
sion can be revealed by the global maximum of the
histogram. For a relatively large ¢ the global maxi-
mum corresponds to a structural fractal dimension,
whereas for smaller ¢ it reveals a textural fractal di-
mension. For single fractal objects the maximum of
the histogram doesn’t change essentially. In order to
reveal the fine structure of the histogram a relatively
small value of k should be selected. For most exam-
ples discussed above we chose k equal to 4 and o
equal to 0.01 for determining a structural fractal di-
mension.

The proposed approach opens the way to auto-
matic calculation of fractal dimensions from the cor-
responding Richardson plot data.
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