
 1

Code Partitioning for Reconfigurable High-Performance Computing:
A Case Study

Volodymyr Kindratenko
National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)
kindr@ncsa.uiuc.edu

Abstract

In this case study, various ways to partition a code
between the microprocessor and FPGA are examined.
Discrete image convolution operation with separable
kernel is used as the case study problem and SRC-6
MAPstation is used as the test platform. The overall
execution time of the resulting implementation serves
as the primary optimization criterion. The paper
presents an overview of the SRC-6 architecture and
programming tools and describes the case study
problem, along with a timing analysis of its
microprocessor-based implementation. Next, three
code partitioning schemes are considered and their
SRC-6 MAP implementations are described, including
detailed timing analyses. The results are compared
and conclusions are drawn as to what partitioning
scheme characteristics contribute most to the
reduction of the overall execution time of the
algorithm. The results of this case study are
applicable to a large class of problems that involve
outsourcing computationally demanding tasks to a
reconfigurable processor.

1. Introduction

Reconfigurable computing (RC) [1] based on field
programmable gate array (FPGA) technology has the
potential to yield performance improvements beyond
those predicted by Moore’s Law [2]. Recently
introduced commercial high-performance
reconfigurable computing (HPRC) systems, such as
Cray XD1, SGI RASC, and SRC-6 MAP™, which are
based on the combination of conventional processors
and FPGAs, enable software developers to exploit
coarse-grain functional parallelism through
conventional parallel processing as well as fine-grain
parallelism through direct hardware execution on
FPGAs. One of the key challenges in effectively using

these systems is the need for manual partitioning of the
algorithm between the microprocessor(s) and
FPGA(s). How to partition the code such that the best
overall application performance can be achieved is a
fundamental research question. While some work has
been done on automatic code partitioning [3-5], none
of the obtained results have been implemented on the
current production systems, such as SRC-6 MAP. It is
up to the software developer to analyze the code and
decide what should be ported to the FPGA and what
should be left on the microprocessor.

Some well-understood common metrics, such as the
number of operations and results per data unit, data
reuse efficiency, data per latency, etc. [6], can be
useful to guide the partitioning process. Yet there are
other practical considerations, such as the number of
times the FPGA function is called, the number of times
the direct memory access (DMA) engine is invoked,
and microprocessor data manipulation tasks, that may
have an adverse effect on the overall algorithm
performance. The goal of this case study is to examine
what impact different code partitioning schemes,
which are similar in the common metrics space [6] but
differ in other ways, have on the overall algorithm
performance.

The case study is based on an example of an image
convolution algorithm that uses a separable
convolution kernel. This particular algorithm enables
us to consider three levels of code partitioning
granularity. At the lowest level, only the core
computational kernel is outsourced to the FPGA and
the microprocessor is left to deal with the memory
manipulation tasks. At the intermediate level, the
algorithm is partitioned along the lines of two major
computational tasks. And at the highest level, the
entire algorithm is ported to the FPGA. These code
partitioning schemes demonstrate the impact of
different levels of partitioning granularity on the
overall code performance and the FPGA code

In Proc. The International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’06), June 26 - 29, 2006, Las Vegas, Nevada

 2

complexity. The observations made in the paper are
intended to serve as the guidelines that one might refer
to when considering porting code to an RC platform.

SRC-6 MAP [7] was used in this case study as the
target platform because it is one the most readily
available production RC systems on the market. The
development toolset, called Carte [8], also provides a
clear path for code development on the FPGA as well
as a convenient debugging and simulation
environment.

2. Case study problem

The MATPHOT code [9] used in stellar photometry
and astrometry is the application driver for this work.
The core of the code is a discrete convolution
operation that convolves a synthetic image with a 21
coefficient-wide damped sinc function,
sinc(x)=sin(πx)/πx, using a separable kernel. In
MATPHOT, single precision floating point numerical
resolution is required for both the synthetic image and
damped sinc function.

The basic idea of image convolution is that a
window of some finite size and shape, h[k,l], is
scanned across the image and the output pixel value is
computed as the weighted sum of the input pixels,
a[m,n], where the weights are the values of the filter
assigned to every pixel of the window:

],[],[],[],[
1

0

1

0

jihjnimalkhnma
k

i

l

j
∑∑
−

=

−

=

++=⊗

The window with its weights is called the convolution
kernel. The per-pixel computational complexity for a
KxL convolution kernel is O(KL).

If the convolution kernel h[k,l] is separable, that is,
if the kernel can be written as

][][],[khlhlkh colrow •=

then the convolution can be performed as follows:

∑ ∑
−

=

−

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++=⊗
1

0

1

0

][][],[],[],[
k

i
col

l

j
row ihjhjnimalkhnma

Thus, instead of applying one two-dimensional

convolution kernel, it is possible to apply two one-
dimensional kernels: the first one in the l direction and
the second one in the k direction. This reduces the per-
pixel computational complexity to O(K+L).

Microcomputer implementation of the last equation
is straightforward: For an MxN image, a[m,n], a one-
dimensional convolution with hrow[l] kernel is
performed for each row of pixels followed by a
convolution with hcol[k] kernel for each column:

2DCONVOLUTION(A, B, M, N, Hr, Hc, L, K)
1 for m ← 0 to M-1
2 for n ← 0 to N-1
3 R1[n] ← A[m, n]
4 R2 ← 1DCONVOLUTION(R1, N, Hr, L)
5 for n ← 0 to N-1
6 B[m, n] ← R2[n]
7 end
8 for n ← 0 to N-1
9 for m ← 0 to M-1
10 C1[m] ← B[m, n]
11 C2 ← 1DCONVOLUTION(C1, M, Hc, K)
12 for m ← 0 to M-1
13 B[m, n] ← C2[m]
14 end
15 return B

Here A denotes input image, B denotes output

image, both of dimension MxN, Hr denotes the
convolution kernel (consisting of L elements) applied
to each row, and Hc denotes the convolution kernel
(consisting of K elements) applied to each column.
Lines 1-7 correspond to per-row convolution: Pixels
from each row are copied to a separate array (lines 2-
3), R1, a one-dimensional convolution with the
appropriate coefficients is performed on R1 (line 4),
and the results are copied to the destination image B
(lines 5-6), which is then processed in a similar manner
for each column (lines 8-14). Finally, the following is
the 1DCONVOLUTION subroutine:

1DCONVOLUTION(I, O, P, H, Q)
1 for p ← 0 to P-1
2 O[p] ← 0
3 for q ← 0 to Q-1
4 O[p] ← O[p] + I[p+q] · H[q]
5 end
6 return O

The 2DCONVOLUTION algorithm is the subject of
the present study. Its computational complexity is
O((K+L)MN); thus, for a fixed-size convolution kernel
the overall execution time of the algorithm is the
function of image size.

3. Case study platform

The SRC-6 MAPstation [7] used in the course of
this study consists of a commodity dual-CPU Xeon

 3

board, a MAP Series C processor, and an 8 GB
common memory module, all interconnected with a 1.4
GB/s low-latency switch. The SNAP™ Series B
interface board is used to connect the CPU board to the
Hi-Bar switch. The SNAP plugs directly into the
mother board’s DIMM memory slot.

The MAP Series C processor module contains two
user FPGAs, one control FPGA, and memory. There
are six banks (A-F) of on-board memory (OBM); each
bank is 64 bits wide and 4 MB deep for a total of 24
MB. The programmer is responsible for data transfer
to and from these memory banks via SRC
programming macros invoked from the FPGA
application. There is an additional 4 MB of dual-
ported memory dedicated solely to data transfer
between the two FPGAs.

The two user FPGAs in the MAP Series C are
Xilinx Virtex-II XC2V6000 FPGAs. Each FPGA
contains 6 million equivalent logic gates, 144
dedicated 18x18 integer multipliers, and 324 KB of
internal dual-ported block RAM (BRAM). These
FPGA elements are not directly visible to the
programmer but are interconnected appropriately as
determined by the programmer’s MAP C algorithm
code, the SRC Carte programming environment tools,
and the Xilinx FPGA place and route tools. The
FPGA clock rate of 100 MHz is set by the SRC
programming environment.

The Carte programming environment [8] for the
SRC MAPstation is highly integrated, and all
compilation targets are generated via a single makefile.
The two main targets of the makefile are a debug
version of the entire program and the combined
microprocessor code and FPGA hardware
programming files. The debug version is useful for
code testing before the final time-intensive hardware
place and route step. Either the Intel icc compiler or
the gcc compiler can be used to generate both the
CPU-only debug executable and the CPU-side of the
combined CPU/MAP executable. The SRC MAP
compiler is invoked by the makefile to produce the
hardware description of the FPGA design for final
combined CPU/MAP target executable. This
intermediate hardware description of the FPGA design
is passed to the Xilinx ISE place and route tools, which
produces the FPGA bit file. Lastly, the linker is
invoked to combine the CPU code and the FPGA
hardware bit file(s) into a unified executable.

4. Code partitioning alternatives

The core of the computation is a fixed-width 21-
coefficient 1D convolution operation that uses single

precision floating point arithmetic. XC2V6000 FPGA
has enough hardware multipliers to implement just two
such 21-coefficient-wide fully unrolled operations (42
single precision floating point multiplications and 40
additions in total) using SRC’s reduced space multiply
macros. Therefore, our ability to perform
simultaneous convolution operations is limited by the
available FPGA hardware resources to just two such
operations.

Considering the overall execution time of the
algorithm as the main efficiency criteria, and taking
into account availability of FPGA resources, what is
the most efficient way to partition the
2DCONVOLUTION algorithm between the
microprocessor and MAP processor?

To answer this question, we examine several
partitioning options and investigate their run-time
behavior. Perhaps the simplest partitioning approach
is to outsource the 1DCONVOLUTION algorithm
alone. Alternatively, the entire convolution operation
in one dimension can be implemented on MAP. And
finally, the entire 2DCONVOLUTION algorithm can
be ported to MAP. Note that these partitioning
alternatives result in the same number of calculations
to be performed on MAP, thus, they are similar in the
sense of the common metrics used in [6] (with the
exception of data reuse efficiency), yet they are very
different as far as the number of times the MAP
subroutine is called and the type and amount of
memory manipulations with which the microprocessor
is left.

4.1. Code partitioning choice # 1

It is natural to consider a partitioning scheme in
which the 1DCONVOLUTION subroutine alone is
outsourced to the MAP processor. An obvious
advantage of this approach is its simplicity: One is
concerned with only one row or column of image
pixels at a time without explicitly distinguishing
between them, which simplifies the data management
aspects of MAP code implementation. The main
disadvantage of this approach, of course, is the need to
call the MAP-based 1DCONVOLUTION function
multiple times, thus likely encountering some MAP
function call overhead that may have an effect on the
overall performance.

Porting 1DCONVOLUTION to MAP is
straightforward. There is enough space and hardware
multipliers on the MAP’s primary FPGA chip to
perform two sets of convolution calculations in parallel
using SRC’s floating point single precision smaller
area macros. Therefore, the overall MAP code
sequence deployed on just one chip is:

 4

• If run the first time, DMA from main RAM
convolution coefficients to OBM bank F

• Copy convolution coefficients from OBM bank F
to on-chip registers

• DMA from the RAM pixel values to OBM bank A
• Do calculations using pixels from OBM bank A

and storing results in OBM bank B
o Bring in the next two pixel values from OBM

bank A to the on-chip pixel registers
o Shift the on-chip pixel registers by two pixels
o Perform two parallel convolution calculations
o Store two results in OBM bank B

• DMA to main RAM results from OBM bank B

The mapped and routed FPGA implementation of
the 1DCONVOLUTION subroutine occupies all
available SLICEs and 91% of all available
MULT18X18s on one MAP Series C processor’s
FPGA and meets timing requirements of 9.998 ns.

4.2. Code partitioning choice # 2

The next partitioning scheme is based on the
observation that in the CPU implementation the entire
image is located in a continuous memory array, one
row of pixels after another. Therefore, it is
straightforward to have access to the consecutive rows
of image pixels without copying them to a separate
array. Thus, the per-row convolution calculations for
the entire image can be outsourced to MAP, literally
by replacing lines 1-7 in the 2DCONVOLUTION
algorithm with just one call to a MAP-based
subroutine. Once all rows of the image are processed,
the image data must be rearranged in the memory so
that the columns occupy a continuous memory array,
one column of pixels after another. Then the same
MAP subroutine can be called on the rearranged image
with the net effect of performing per-column
convolution calculations. At the end, the pixels are
moved back to their original locations. The overall
MAP code sequence for this implementation is:

• DMA in convolution coefficients to OBM bank F
• Copy convolution coefficients from OBM bank F

to on-chip registers
• For each row of image pixels

o DMA in pixel values to OBM bank A
o Do calculations using pixels from OBM bank

A and storing results in OBM bank B
o DMA out results from OBM bank B

Conceptually, the MAP subroutine of this

implementation is very similar to the previous

implementation; we just augmented the previously
written code with an extra loop responsible for
bringing in and out the next row/column of data rather
than leaving this to the microprocessor. The
microprocessor code now is left with the extra work
needed to rearrange the image data in memory.

This implementation occupies all available SLICEs,
some of which are packed with unrelated logic, and
95% of all available MULT18X18s on one MAP
Series C processor’s FPGA and meets timing
requirements of 9.994 ns.

4.3. Code partitioning choice # 3

In this partitioning scheme, the entire
2DCONVOLUTION algorithm is ported to MAP.
However, there are some difficulties with
implementing this approach in practice. Note that the
previous design occupied all available SLICEs on the
MAP Series C processor’s FPGA, some of which were
already packed with unrelated logic. Therefore, the
primary FPGA is used to implement the calculations in
one image dimension and the secondary FPGA is used
to implement the calculations in the other image
dimension. The intermediate image is stored in the on-
board memory, which limits the size of the image that
can be processed by this implementation to 12 MB.
The primary FPGA MAP code sequence is:

• DMA in one set of convolution coefficients to

OBM bank E
• DMA in the other set of convolution coefficients

to OBM bank F
• Copy convolution coefficients from OBM bank F

to on-chip registers
• DMA in input image to OBM banks A-C
• For each row of image pixels

o Do calculations using pixel values from OBM
banks A, B, and C and storing results in OBM
banks D, E, and F

• Let other chip to do per-column calculations
• DMA out results from OBM banks A-C

The FPGA chips on the MAP processor operate in a

master-slave mode. The secondary chip waits until the
primary chip is done with the per-row calculations and
only then performs per-column calculations. The
secondary FPGA MAP code sequence is:

• Copy convolution coefficients from OBM bank E

to on-chip registers
• Wait until the primary chip is done with per-row

calculations

 5

• For each column of image pixels
o Do calculations using pixel values from OBM

banks D, E, and F and storing results in OBM
banks A, B, and C

This implementation occupies all available SLICEs

and over 95% of MULT18X18s on both chips and
meets timing requirements of 9.995 ns. However, it
took some effort to fine-tune the secondary FPGA
design to fit on the chip and meet timing requirements.

5. Implementation results and discussion

Let us first examine the original microprocessor-
only implementation described in Section 2. Figure 1
shows how the overall execution time changes as the
image size increases. It also shows what fraction of
time is spent due to memory copy operations (lines 2-
3, 5-6, 9-10, 12-13 of the 2DCONVOLUTION
algorithm) and due to the actual calculations (lines 4
and 11). Thus, for a 2,048x2,048 pixel image, memory
copy operations are responsible for about 0.72
seconds, whereas actual convolution calculations take
about 0.62 seconds. (Calculations reported in this
paper were performed on a 2.8 GHz Intel dual-Xeon
platform; code was compiled with the gcc 3.4.3
compiler using the O3 optimization level. The
microprocessor “Read Time Stamp Counter”
instruction (RDTSC) [10] was used to measure timing
information.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 256 512 1024 2048

image size (pixels)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) actual calculations

memory copy

Figure 1. Time to compute vs. image size for
2DCONVOLUTION algorithm. The horizontal axis
shows image dimensions, thus “512” means an image
consisting of 512x512 pixels.

Figure 2 provides test results for the first
partitioning scheme implemented as described in
Section 4.1. As with the microprocessor-only
implementation, a significant amount of time is spent

due to the memory copy operations, whereas time
spent performing actual calculations is only marginally
smaller than in the native CPU-only implementation.
Note that ‘MAP code execution’ time includes both
data transfer and convolution calculations time.
However, an even larger amount of time is now spent
due to the MAP function call overhead. We measure
this overhead as the difference between the time spent
on the CPU while executing the MAP function and the
time measured inside the MAP function while
executing its internals (including data transfer) on the
FPGA. In other words, MAP function call overhead is
what it takes to call an “empty” MAP function that
returns immediately without any work done.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 256 512 1024 2048

image size (pixels)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) MAP code execution

MAP function call overhead
memory copy

Figure 2. Execution time for 2DCONVOLUTION
algorithm in which 1DCONVOLUTION subroutine
alone is ported to MAP.

Figure 3 provides test results for the second
partitioning scheme implementation described in
Section 4.2. The MAP function call overhead, which
was a major issue with the previous code partitioning
scheme, is now independent of the image size (since
the MAP function is called only twice) and became
much smaller. The MAP code execution time
increased as compared to the previous implementation.
However, the amount of time spent due to the memory
copy operations on the CPU remains about the same as
with our previous implementation, even though each
pixel value is copied only twice, whereas in the
previous implementation it was copied four times,
although in smaller memory segments. This is likely
due to the CPU memory cache misses.

Note that the actual calculation time of the MAP
implementation can still be reduced if we involve the
second FPGA chip available on the MAP Series C
processor. But even this will not reduce the overall
algorithm execution time with any significance since
the time spent due to the image rearrangement on the

 6

CPU accounts for the majority of the execution time.
The need to “rotate” the image twice in the system
memory resulted in a significant time overhead.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

128 256 512 1024 2048

image size (pixels)

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) MAP code execution

MAP function call overhead
memory copy

Figure 3. Execution time for 2DCONVOLUTION
algorithm in which the entire convolution operation in
one image dimension is outsourced to MAP.

Figure 4 provides test results for the third

partitioning scheme implemented as described in
Section 4.3. In this implementation, all the
microprocessor-side calculations and memory
manipulations have been eliminated. The MAP
subroutine is called only once, therefore the MAP
function call overhead remains small and independent
of the image size. This overhead, however, is doubled
as compared to the previous implementation due to the
fact that now both FPGA chips are used. On the other
hand, the actual calculation time measured on the MAP
decreased significantly since the DMA engine is
invoked from the FPGA design only twice, once to
transfer in the entire image and once to transfer out.
(Remember that in the previous implementation the
DMA engine was invoked twice per each image
row/column.) Thus, for an image consisting of
1,772x1,772 pixels, we achieved a 3x overall code
execution speedup.

Figure 5 shows a combined comparison chart of the
execution time for all four implementations. It is clear
that the first code partitioning scheme suffers due to
the MAP function call overhead. Even though this
partitioning scheme is intuitive and simple to
implement, it increases the overall execution time
because the MAP function is called frequently and thus
the accumulated MAP function call overhead adds up
quickly to the overall execution time.

The second code partitioning scheme suffers due to
the need to perform costly memory manipulations on
the microprocessor and also due to the need to invoke
the DMA data transfer engine multiple times.

The third code partitioning scheme eliminates the
need for any memory manipulations on the
microprocessor side. It also eliminates the need for the
frequent use of the DMA data transfer engine as the
entire image data is transferred in and out only once.
As a result, the MAP code execution time is very short
and the overall execution time is dominated by the
MAP function call overhead.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

128 256 512 1024 1772

image size (pixels)
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

) MAP code execution

MAP function call overhead

Figure 4. Execution time as a function of image size
for 2DCONVOLUTION algorithm implemented solely
on MAP. Note the vertical axis scale difference
between this figure and Figures 1- 3. Also note that
the largest image that can be processed by this
implementation is 1,772x1,772 pixels.

0

0.2

0.4

0.6

0.8

1

CPU only scheme #1 scheme #2 scheme #3

Implementation type

Ex
ec

ut
io

n
tim

e
(s

)

MAP 'compute' time
MAP function call overhead
CPU 'compute' time
CPU data manipulation time

Figure 5. Execution time comparison chart for a
1,024x1,024 pixels image.

The 2DCONVOLUTION algorithm is an

interesting case to study since the best way to partition
it is not immediately clear based on the run-time
analysis of the algorithm shown in Figure 1. It is
tempting to port the 1DCONVOLUTION algorithm
alone since it is responsible for about half of the
overall execution time. Yet this resulted in a

 7

significant MAP function call overhead that increased
the overall execution time (Figure 2). Porting the
entire 2DCONVOLUTION algorithm presents some
challenges since it requires both MAP FPGAs to be
utilized at their full capacity, thus making it difficult to
meet timing requirements. Yet this approach yields the
best overall performance.

6. Conclusions and future work

All three partitioning schemes presented in this
paper resulted in the same number of calculations
executed on the FPGA when combined across a single
run of the 2DCONVOLUTION algorithm. Yet they
resulted in very different execution times. This points
out the importance of the overall code organization for
reconfigurable system applications. The MAP
function should be called as few times as possible in
order to eliminate the MAP function call overhead. A
partitioning scheme that reduces or eliminates the need
for data manipulations by the microprocessor should
be considered. The DMA engine should be invoked in
the MAP code as few times as possible since it adds
considerable overhead to the MAP code execution.
Thus, when considering different code partitioning
alternatives, in addition to the metrics based on various
aspects of data reuse such as those reported in [6], one
should also take into account other practical
considerations, such as the number of times the MAP
code will be invoked, amount if extra memory
manipulation tasks left to the microprocessor, etc.

We have not seen MAP function call overhead
timing measurements reported in the literature and our
own estimates vary. For example, combined MAP
function call overhead for the design described in
Section 4.2 is 0.068 seconds, whereas the overhead for
the design provided in Section 4.3 is 0.135 seconds. In
the first case, only one FPGA chip was used and the
MAP function was called twice. In the second case,
both FPGAs were used, but the MAP subroutine was
called only once. Our estimates show that the first
time a MAP subroutine is called it encounters a 67
millisecond overhead due to the need to load the
FPGA configuration bitfile. Each consecutive call to
the same MAP function resulted in an overhead that
varied for different designs. The nature of this
variability and the ways it can be precisely measured
and/or predicted is the subject of the future work.

7. Acknowledgements

This work was funded by the National Science
Foundation (NSF) grant SCI 05-25308. MATPHOT

software was developed and kindly provided to us by
Dr. Kenneth Mighell from the National Optical
Astronomy Observatory. Special thanks to David
Caliga, Dan Poznanovic, and Jeff Hammes, all from
SRC Computers Inc., for their help and support with
SRC-6 system. Further comments and suggestions
were provided by David Pointer, Dr. Craig Steffen and
David Raila from NCSA’s Innovative Systems
Laboratory. Special thanks to Trish Barker from
NCSA’s Office of Public Affairs for help in preparing
this publication.

7. References

[1] M.B. Gokhale, and P.S. Graham, Reconfigurable
Computing: Accelerating Computation with Field-
Programmable Gate Arrays, Springer, Dordrecht, 2005.

[2] K. Underwood, “FPGAs vs. CPUs: Trends in Peak
Floating Point Performance,” In Proc. 12th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, 2004, pp 171-180.

[3] T. Callahan, J. Hauser, and J. Wawrzynek, “The GARP
architecture and C compiler”. IEEE Computers, 33:4 (April
2000), pp. 62-69.

[4] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood, “Hardware-software co-design of embedded
reconfigurable architectures”, In Proc. Design Automation
Conf., 2000, pp. 507--512.

[5] B. Knerr, M. Holzer, and M. Rupp, “HW/SW Partitioning
Using High Level Metrics”, In Proc. Int. Conf. on
Computing, Communications and Control Technologies,
2004, pp. 33-38.

[6] V. Kindratenko, D. Pointer, and D. Caliga, “High-
Performance Reconfigurable Computing Application
Programming in C”, White Paper, January 2006.
netfiles.uiuc.edu/dpointer/www/whitepapers/hprc_v1_0.pdf

[7] SRC Computers Inc., Colorado Springs, CO, SRC
Systems and Servers Datasheet, 2005.

[8] SRC Computers Inc., Colorado Springs, CO, SRC C
Programming Environment v 1.9 Guide, 2005.

[9] Mighell, K. J., “Stellar photometry and astrometry with
discrete point spread functions”, Monthly Notices of the
Royal Astronomical Society, 316, 861-878 (11 August 2005).

[10] IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3B: System Programming Guide, Part 2.

