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Abstract 
 

In this case study, various ways to partition a code 
between the microprocessor and FPGA are examined.  
Discrete image convolution operation with separable 
kernel is used as the case study problem and SRC-6 
MAPstation is used as the test platform.  The overall 
execution time of the resulting implementation serves 
as the primary optimization criterion.  The paper 
presents an overview of the SRC-6 architecture and 
programming tools and describes the case study 
problem, along with a timing analysis of its 
microprocessor-based implementation.  Next, three 
code partitioning schemes are considered and their 
SRC-6 MAP implementations are described, including 
detailed timing analyses.  The results are compared 
and conclusions are drawn as to what partitioning 
scheme characteristics contribute most to the 
reduction of the overall execution time of the 
algorithm.  The results of this case study are 
applicable to a large class of problems that involve 
outsourcing computationally demanding tasks to a 
reconfigurable processor. 
 
1. Introduction 
 

Reconfigurable computing (RC) [1] based on field 
programmable gate array (FPGA) technology has the 
potential to yield performance improvements beyond 
those predicted by Moore’s Law [2].  Recently 
introduced commercial high-performance 
reconfigurable computing (HPRC) systems, such as 
Cray XD1, SGI RASC, and SRC-6 MAP™, which are 
based on the combination of conventional processors 
and FPGAs, enable software developers to exploit 
coarse-grain functional parallelism through 
conventional parallel processing as well as fine-grain 
parallelism through direct hardware execution on 
FPGAs.  One of the key challenges in effectively using 

these systems is the need for manual partitioning of the 
algorithm between the microprocessor(s) and 
FPGA(s).  How to partition the code such that the best 
overall application performance can be achieved is a 
fundamental research question.  While some work has 
been done on automatic code partitioning [3-5], none 
of the obtained results have been implemented on the 
current production systems, such as SRC-6 MAP.  It is 
up to the software developer to analyze the code and 
decide what should be ported to the FPGA and what 
should be left on the microprocessor.   

Some well-understood common metrics, such as the 
number of operations and results per data unit, data 
reuse efficiency, data per latency, etc. [6], can be 
useful to guide the partitioning process.  Yet there are 
other practical considerations, such as the number of 
times the FPGA function is called, the number of times 
the direct memory access (DMA) engine is invoked, 
and microprocessor data manipulation tasks, that may 
have an adverse effect on the overall algorithm 
performance.  The goal of this case study is to examine 
what impact different code partitioning schemes, 
which are similar in the common metrics space [6] but 
differ in other ways, have on the overall algorithm 
performance. 

The case study is based on an example of an image 
convolution algorithm that uses a separable 
convolution kernel.  This particular algorithm enables 
us to consider three levels of code partitioning 
granularity.  At the lowest level, only the core 
computational kernel is outsourced to the FPGA and 
the microprocessor is left to deal with the memory 
manipulation tasks.  At the intermediate level, the 
algorithm is partitioned along the lines of two major 
computational tasks.  And at the highest level, the 
entire algorithm is ported to the FPGA.  These code 
partitioning schemes demonstrate the impact of 
different levels of partitioning granularity on the 
overall code performance and the FPGA code 
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complexity.  The observations made in the paper are 
intended to serve as the guidelines that one might refer 
to when considering porting code to an RC platform. 

SRC-6 MAP [7] was used in this case study as the 
target platform because it is one the most readily 
available production RC systems on the market.  The 
development toolset, called Carte [8], also provides a 
clear path for code development on the FPGA as well 
as a convenient debugging and simulation 
environment. 
 
2. Case study problem 
 

The MATPHOT code [9] used in stellar photometry 
and astrometry is the application driver for this work.  
The core of the code is a discrete convolution 
operation that convolves a synthetic image with a 21 
coefficient-wide damped sinc function, 
sinc(x)=sin(πx)/πx, using a separable kernel.  In 
MATPHOT, single precision floating point numerical 
resolution is required for both the synthetic image and 
damped sinc function. 

The basic idea of image convolution is that a 
window of some finite size and shape, h[k,l], is 
scanned across the image and the output pixel value is 
computed as the weighted sum of the input pixels, 
a[m,n], where the weights are the values of the filter 
assigned to every pixel of the window: 
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The window with its weights is called the convolution 
kernel.  The per-pixel computational complexity for a 
KxL convolution kernel is O(KL). 

If the convolution kernel h[k,l] is separable, that is, 
if the kernel can be written as 
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then the convolution can be performed as follows: 
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Thus, instead of applying one two-dimensional 

convolution kernel, it is possible to apply two one-
dimensional kernels: the first one in the l direction and 
the second one in the k direction.  This reduces the per-
pixel computational complexity to O(K+L). 

Microcomputer implementation of the last equation 
is straightforward: For an MxN image, a[m,n], a one-
dimensional convolution with hrow[l] kernel is 
performed for each row of pixels followed by a 
convolution with hcol[k] kernel for each column: 

 
2DCONVOLUTION(A, B, M, N, Hr, Hc, L, K) 
1 for m ← 0 to M-1 
2  for n ← 0 to N-1 
3   R1[n] ← A[m, n] 
4  R2 ← 1DCONVOLUTION(R1, N, Hr, L) 
5  for n ← 0 to N-1 
6   B[m, n] ← R2[n] 
7 end 
8 for n ← 0 to N-1 
9  for m ← 0 to M-1 
10   C1[m] ← B[m, n] 
11  C2 ← 1DCONVOLUTION(C1, M, Hc, K) 
12  for m ← 0 to M-1 
13   B[m, n] ← C2[m] 
14 end 
15 return B 

 
Here A denotes input image, B denotes output 

image, both of dimension MxN, Hr denotes the 
convolution kernel (consisting of L elements) applied 
to each row, and Hc denotes the convolution kernel 
(consisting of K elements) applied to each column.  
Lines 1-7 correspond to per-row convolution: Pixels 
from each row are copied to a separate array (lines 2-
3), R1, a one-dimensional convolution with the 
appropriate coefficients is performed on R1 (line 4), 
and the results are copied to the destination image B 
(lines 5-6), which is then processed in a similar manner 
for each column (lines 8-14).  Finally, the following is 
the 1DCONVOLUTION subroutine: 
 
1DCONVOLUTION(I, O, P, H, Q) 
1 for p ← 0 to P-1 
2  O[p] ← 0 
3  for q ← 0 to Q-1 
4   O[p] ← O[p] + I[p+q] · H[q] 
5 end 
6 return O 
 
The 2DCONVOLUTION algorithm is the subject of 
the present study.  Its computational complexity is 
O((K+L)MN); thus, for a fixed-size convolution kernel 
the overall execution time of the algorithm is the 
function of image size. 
 
3. Case study platform 
 

The SRC-6 MAPstation [7] used in the course of 
this study consists of a commodity dual-CPU Xeon 
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board, a MAP Series C processor, and an 8 GB 
common memory module, all interconnected with a 1.4 
GB/s low-latency switch.  The SNAP™ Series B 
interface board is used to connect the CPU board to the 
Hi-Bar switch.  The SNAP plugs directly into the 
mother board’s DIMM memory slot. 

The MAP Series C processor module contains two 
user FPGAs, one control FPGA, and memory.  There 
are six banks (A-F) of on-board memory (OBM); each 
bank is 64 bits wide and 4 MB deep for a total of 24 
MB.  The programmer is responsible for data transfer 
to and from these memory banks via SRC 
programming macros invoked from the FPGA 
application.  There is an additional 4 MB of dual-
ported memory dedicated solely to data transfer 
between the two FPGAs. 

The two user FPGAs in the MAP Series C are 
Xilinx Virtex-II XC2V6000 FPGAs.  Each FPGA 
contains 6 million equivalent logic gates, 144 
dedicated 18x18 integer multipliers, and 324 KB of 
internal dual-ported block RAM (BRAM).  These 
FPGA elements are not directly visible to the 
programmer but are interconnected appropriately as 
determined by the programmer’s MAP C algorithm 
code, the SRC Carte programming environment tools, 
and the Xilinx FPGA place and route tools.  The 
FPGA clock rate of 100 MHz is set by the SRC 
programming environment. 

The Carte programming environment [8] for the 
SRC MAPstation is highly integrated, and all 
compilation targets are generated via a single makefile.  
The two main targets of the makefile are a debug 
version of the entire program and the combined 
microprocessor code and FPGA hardware 
programming files.  The debug version is useful for 
code testing before the final time-intensive hardware 
place and route step.  Either the Intel icc compiler or 
the gcc compiler can be used to generate both the 
CPU-only debug executable and the CPU-side of the 
combined CPU/MAP executable.  The SRC MAP 
compiler is invoked by the makefile to produce the 
hardware description of the FPGA design for final 
combined CPU/MAP target executable.  This 
intermediate hardware description of the FPGA design 
is passed to the Xilinx ISE place and route tools, which 
produces the FPGA bit file.  Lastly, the linker is 
invoked to combine the CPU code and the FPGA 
hardware bit file(s) into a unified executable. 
 
4. Code partitioning alternatives 
 

The core of the computation is a fixed-width 21-
coefficient 1D convolution operation that uses single 

precision floating point arithmetic.  XC2V6000 FPGA 
has enough hardware multipliers to implement just two 
such 21-coefficient-wide fully unrolled operations (42 
single precision floating point multiplications and 40 
additions in total) using SRC’s reduced space multiply 
macros.  Therefore, our ability to perform 
simultaneous convolution operations is limited by the 
available FPGA hardware resources to just two such 
operations. 

Considering the overall execution time of the 
algorithm as the main efficiency criteria, and taking 
into account availability of FPGA resources, what is 
the most efficient way to partition the 
2DCONVOLUTION algorithm between the 
microprocessor and MAP processor? 

To answer this question, we examine several 
partitioning options and investigate their run-time 
behavior.  Perhaps the simplest partitioning approach 
is to outsource the 1DCONVOLUTION algorithm 
alone.  Alternatively, the entire convolution operation 
in one dimension can be implemented on MAP.  And 
finally, the entire 2DCONVOLUTION algorithm can 
be ported to MAP.  Note that these partitioning 
alternatives result in the same number of calculations 
to be performed on MAP, thus, they are similar in the 
sense of the common metrics used in [6] (with the 
exception of data reuse efficiency), yet they are very 
different as far as the number of times the MAP 
subroutine is called and the type and amount of 
memory manipulations with which the microprocessor 
is left. 
 
4.1. Code partitioning choice # 1 
 

It is natural to consider a partitioning scheme in 
which the 1DCONVOLUTION subroutine alone is 
outsourced to the MAP processor.  An obvious 
advantage of this approach is its simplicity: One is 
concerned with only one row or column of image 
pixels at a time without explicitly distinguishing 
between them, which simplifies the data management 
aspects of MAP code implementation.  The main 
disadvantage of this approach, of course, is the need to 
call the MAP-based 1DCONVOLUTION function 
multiple times, thus likely encountering some MAP 
function call overhead that may have an effect on the 
overall performance. 

Porting 1DCONVOLUTION to MAP is 
straightforward.  There is enough space and hardware 
multipliers on the MAP’s primary FPGA chip to 
perform two sets of convolution calculations in parallel 
using SRC’s floating point single precision smaller 
area macros.  Therefore, the overall MAP code 
sequence deployed on just one chip is: 
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• If run the first time, DMA from main RAM 
convolution coefficients to OBM bank F 

• Copy convolution coefficients from OBM bank F 
to on-chip registers 

• DMA from the RAM pixel values to OBM bank A 
• Do calculations using pixels from OBM bank A 

and storing results in OBM bank B 
o Bring in the next two pixel values from OBM 

bank A to the on-chip pixel registers 
o Shift the on-chip pixel registers by two pixels 
o Perform two parallel convolution calculations 
o Store two results in OBM bank B 

• DMA to main RAM results from OBM bank B 
 

The mapped and routed FPGA implementation of 
the 1DCONVOLUTION subroutine occupies all 
available SLICEs and 91% of all available 
MULT18X18s on one MAP Series C processor’s 
FPGA and meets timing requirements of 9.998 ns. 
 
4.2. Code partitioning choice # 2 
 

The next partitioning scheme is based on the 
observation that in the CPU implementation the entire 
image is located in a continuous memory array, one 
row of pixels after another.  Therefore, it is 
straightforward to have access to the consecutive rows 
of image pixels without copying them to a separate 
array.  Thus, the per-row convolution calculations for 
the entire image can be outsourced to MAP, literally 
by replacing lines 1-7 in the 2DCONVOLUTION 
algorithm with just one call to a MAP-based 
subroutine.  Once all rows of the image are processed, 
the image data must be rearranged in the memory so 
that the columns occupy a continuous memory array, 
one column of pixels after another.  Then the same 
MAP subroutine can be called on the rearranged image 
with the net effect of performing per-column 
convolution calculations.  At the end, the pixels are 
moved back to their original locations.  The overall 
MAP code sequence for this implementation is: 
 
• DMA in convolution coefficients to OBM bank F 
• Copy convolution coefficients from OBM bank F 

to on-chip registers 
• For each row of image pixels 

o DMA in pixel values to OBM bank A 
o Do calculations using pixels from OBM bank 

A and storing results in OBM bank B 
o DMA out results from OBM bank B 

 
Conceptually, the MAP subroutine of this 

implementation is very similar to the previous 

implementation; we just augmented the previously 
written code with an extra loop responsible for 
bringing in and out the next row/column of data rather 
than leaving this to the microprocessor.  The 
microprocessor code now is left with the extra work 
needed to rearrange the image data in memory. 

This implementation occupies all available SLICEs, 
some of which are packed with unrelated logic, and 
95% of all available MULT18X18s on one MAP 
Series C processor’s FPGA and meets timing 
requirements of 9.994 ns. 
 
4.3. Code partitioning choice # 3 
 

In this partitioning scheme, the entire 
2DCONVOLUTION algorithm is ported to MAP.  
However, there are some difficulties with 
implementing this approach in practice.  Note that the 
previous design occupied all available SLICEs on the 
MAP Series C processor’s FPGA, some of which were 
already packed with unrelated logic.  Therefore, the 
primary FPGA is used to implement the calculations in 
one image dimension and the secondary FPGA is used 
to implement the calculations in the other image 
dimension.  The intermediate image is stored in the on-
board memory, which limits the size of the image that 
can be processed by this implementation to 12 MB.  
The primary FPGA MAP code sequence is: 

 
• DMA in one set of convolution coefficients to 

OBM bank E 
• DMA in the other set of convolution coefficients 

to OBM bank F 
• Copy convolution coefficients from OBM bank F 

to on-chip registers 
• DMA in input image to OBM banks A-C 
• For each row of image pixels 

o Do calculations using pixel values from OBM 
banks A, B, and C and storing results in OBM 
banks D, E, and F 

• Let other chip to do per-column calculations 
• DMA out results from OBM banks A-C 

 
The FPGA chips on the MAP processor operate in a 

master-slave mode.  The secondary chip waits until the 
primary chip is done with the per-row calculations and 
only then performs per-column calculations.  The 
secondary FPGA MAP code sequence is: 

 
• Copy convolution coefficients from OBM bank E 

to on-chip registers 
• Wait until the primary chip is done with per-row 

calculations 
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• For each column of image pixels 
o Do calculations using pixel values from OBM 

banks D, E, and F and storing results in OBM 
banks A, B, and C 

 
This implementation occupies all available SLICEs 

and over 95% of MULT18X18s on both chips and 
meets timing requirements of 9.995 ns.  However, it 
took some effort to fine-tune the secondary FPGA 
design to fit on the chip and meet timing requirements. 
 
5. Implementation results and discussion 
 

Let us first examine the original microprocessor-
only implementation described in Section 2.  Figure 1 
shows how the overall execution time changes as the 
image size increases.  It also shows what fraction of 
time is spent due to memory copy operations (lines 2-
3, 5-6, 9-10, 12-13 of the 2DCONVOLUTION 
algorithm) and due to the actual calculations (lines 4 
and 11).  Thus, for a 2,048x2,048 pixel image, memory 
copy operations are responsible for about 0.72 
seconds, whereas actual convolution calculations take 
about 0.62 seconds.  (Calculations reported in this 
paper were performed on a 2.8 GHz Intel dual-Xeon 
platform; code was compiled with the gcc 3.4.3 
compiler using the O3 optimization level.  The 
microprocessor “Read Time Stamp Counter” 
instruction (RDTSC) [10] was used to measure timing 
information.) 
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Figure 1.  Time to compute vs. image size for 
2DCONVOLUTION algorithm.  The horizontal axis 
shows image dimensions, thus “512” means an image 
consisting of 512x512 pixels. 
 

Figure 2 provides test results for the first 
partitioning scheme implemented as described in 
Section 4.1.  As with the microprocessor-only 
implementation, a significant amount of time is spent 

due to the memory copy operations, whereas time 
spent performing actual calculations is only marginally 
smaller than in the native CPU-only implementation.  
Note that ‘MAP code execution’ time includes both 
data transfer and convolution calculations time.  
However, an even larger amount of time is now spent 
due to the MAP function call overhead.  We measure 
this overhead as the difference between the time spent 
on the CPU while executing the MAP function and the 
time measured inside the MAP function while 
executing its internals (including data transfer) on the 
FPGA.  In other words, MAP function call overhead is 
what it takes to call an “empty” MAP function that 
returns immediately without any work done. 
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Figure 2.  Execution time for 2DCONVOLUTION 
algorithm in which 1DCONVOLUTION subroutine 
alone is ported to MAP. 
 

Figure 3 provides test results for the second 
partitioning scheme implementation described in 
Section 4.2.  The MAP function call overhead, which 
was a major issue with the previous code partitioning 
scheme, is now independent of the image size (since 
the MAP function is called only twice) and became 
much smaller.  The MAP code execution time 
increased as compared to the previous implementation.  
However, the amount of time spent due to the memory 
copy operations on the CPU remains about the same as 
with our previous implementation, even though each 
pixel value is copied only twice, whereas in the 
previous implementation it was copied four times, 
although in smaller memory segments.  This is likely 
due to the CPU memory cache misses. 

Note that the actual calculation time of the MAP 
implementation can still be reduced if we involve the 
second FPGA chip available on the MAP Series C 
processor.  But even this will not reduce the overall 
algorithm execution time with any significance since 
the time spent due to the image rearrangement on the 
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CPU accounts for the majority of the execution time.  
The need to “rotate” the image twice in the system 
memory resulted in a significant time overhead. 
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Figure 3.  Execution time for 2DCONVOLUTION 
algorithm in which the entire convolution operation in 
one image dimension is outsourced to MAP. 

 
Figure 4 provides test results for the third 

partitioning scheme implemented as described in 
Section 4.3.  In this implementation, all the 
microprocessor-side calculations and memory 
manipulations have been eliminated.  The MAP 
subroutine is called only once, therefore the MAP 
function call overhead remains small and independent 
of the image size.  This overhead, however, is doubled 
as compared to the previous implementation due to the 
fact that now both FPGA chips are used.  On the other 
hand, the actual calculation time measured on the MAP 
decreased significantly since the DMA engine is 
invoked from the FPGA design only twice, once to 
transfer in the entire image and once to transfer out.  
(Remember that in the previous implementation the 
DMA engine was invoked twice per each image 
row/column.)  Thus, for an image consisting of 
1,772x1,772 pixels, we achieved a 3x overall code 
execution speedup. 

Figure 5 shows a combined comparison chart of the 
execution time for all four implementations.  It is clear 
that the first code partitioning scheme suffers due to 
the MAP function call overhead.  Even though this 
partitioning scheme is intuitive and simple to 
implement, it increases the overall execution time 
because the MAP function is called frequently and thus 
the accumulated MAP function call overhead adds up 
quickly to the overall execution time. 

The second code partitioning scheme suffers due to 
the need to perform costly memory manipulations on 
the microprocessor and also due to the need to invoke 
the DMA data transfer engine multiple times. 

The third code partitioning scheme eliminates the 
need for any memory manipulations on the 
microprocessor side.  It also eliminates the need for the 
frequent use of the DMA data transfer engine as the 
entire image data is transferred in and out only once.  
As a result, the MAP code execution time is very short 
and the overall execution time is dominated by the 
MAP function call overhead. 
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Figure 4.  Execution time as a function of image size 
for 2DCONVOLUTION algorithm implemented solely 
on MAP.  Note the vertical axis scale difference 
between this figure and Figures 1- 3.  Also note that 
the largest image that can be processed by this 
implementation is 1,772x1,772 pixels. 
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Figure 5.  Execution time comparison chart for a 
1,024x1,024 pixels image. 

 
The 2DCONVOLUTION algorithm is an 

interesting case to study since the best way to partition 
it is not immediately clear based on the run-time 
analysis of the algorithm shown in Figure 1.  It is 
tempting to port the 1DCONVOLUTION algorithm 
alone since it is responsible for about half of the 
overall execution time.  Yet this resulted in a 
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significant MAP function call overhead that increased 
the overall execution time (Figure 2).  Porting the 
entire 2DCONVOLUTION algorithm presents some 
challenges since it requires both MAP FPGAs to be 
utilized at their full capacity, thus making it difficult to 
meet timing requirements.  Yet this approach yields the 
best overall performance. 
 
6. Conclusions and future work 
 

All three partitioning schemes presented in this 
paper resulted in the same number of calculations 
executed on the FPGA when combined across a single 
run of the 2DCONVOLUTION algorithm.  Yet they 
resulted in very different execution times.  This points 
out the importance of the overall code organization for 
reconfigurable system applications.  The MAP 
function should be called as few times as possible in 
order to eliminate the MAP function call overhead.  A 
partitioning scheme that reduces or eliminates the need 
for data manipulations by the microprocessor should 
be considered.  The DMA engine should be invoked in 
the MAP code as few times as possible since it adds 
considerable overhead to the MAP code execution.  
Thus, when considering different code partitioning 
alternatives, in addition to the metrics based on various 
aspects of data reuse such as those reported in [6], one 
should also take into account other practical 
considerations, such as the number of times the MAP 
code will be invoked, amount if extra memory 
manipulation tasks left to the microprocessor, etc. 

We have not seen MAP function call overhead 
timing measurements reported in the literature and our 
own estimates vary.  For example, combined MAP 
function call overhead for the design described in 
Section 4.2 is 0.068 seconds, whereas the overhead for 
the design provided in Section 4.3 is 0.135 seconds.  In 
the first case, only one FPGA chip was used and the 
MAP function was called twice.  In the second case, 
both FPGAs were used, but the MAP subroutine was 
called only once.  Our estimates show that the first 
time a MAP subroutine is called it encounters a 67 
millisecond overhead due to the need to load the 
FPGA configuration bitfile.  Each consecutive call to 
the same MAP function resulted in an overhead that 
varied for different designs.  The nature of this 
variability and the ways it can be precisely measured 
and/or predicted is the subject of the future work. 
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