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Abstract 
 

CHiMPS (Compiling High level language to 

Massively Pipelined System) system, developed by 

Xilinx is gaining popularity due to its convenient 

computational model and architecture for field 

programmable gate array computing. The CHiMPS 

system utilizes CHiMPS target language as an 

intermediate representation to bridge between the high 

level language and the data flow architecture 

generated from it. However, currently the CHiMPS 

frontend does not provide many commonly used 

optimizations and has some use restrictions. In this 

paper we present an alternative compiler environment 

based on low level virtual machine compiler 

environment extended to generate CHiMPS target 

language code for the CHiMPS architecture. Our 

implementation provides good support for global 

optimizations and analysis and overcomes many 

limitations of the original Xilinx CHiMPS compiler. 

Simulation results from codes based on this approach 

show to outperform those obtained with the original 

CHiMPS compiler. 

 

1. Introduction 
 

1.1. CHiMPS 
 

Recently, systems have been developed that employ 

Field Programmable Gate Arrays (FPGAs) as 

application accelerators. In order to execute 

applications on such systems, the application 

programmer extracts computationally intensive kernel 

from the application, reorganizes data structures to 

accommodate memory subsystem, and rewrites the 

kernel in the highly specialized environment for FPGA 

execution. The CHiMPS (Compiling High level 

language to Massively Pipelined System) system [1], 

developed by Xilinx, employs a unique approach by 

imposing a computational model on the FPGA 

subsystem, treating it as a virtualized hardware 

architecture that is convenient for high level code 

compilation.  The CHiMPS compiler transforms high 

level language (HLL) codes, currently written in ANSI 

C, to CHiMPS target language (CTL), which is 

combined with runtime support for the FPGA runtime 

environment and assembled using the CHiMPS 

assembler and FPGA design tools to a hardware data 

flow implementation [2]. The instructions defined in 

CTL have a close resemblance to a traditional 

microprocessor instruction set which is convenient for 

compiling, optimizing, and should be familiar to 

programmers [3, 4].  This effectively bridges the gap 

between hardware design and traditional software 

development and only imposes minor costs related to 

runtime overhead support to virtualize the architecture. 

 

1.2. LLVM 
 

Low level virtual machine (LLVM) compiler [5], 

originally developed at the University of Illinois, is 

now an open source compiler project that is aimed at 

supporting global optimizations. It has many attractive 

features for program analysis and optimization. LLVM 

has a GCC based C and C++ frontend as well as its 

own frontend, Clang, that offers modular and reusable 

components for building compilers that are target-

independent and easy to use. This reduces the time and 

effort to build a particular compiler. Static backends 

already implemented in LLVM including X86, X86-64, 

PowerPC 32/64, ARM and others share those 

components. A notable feature of LLVM is its low 

level static single assignment (SSA) form virtual 

instruction set which is a low-level intermediate 

representation (IR) that uses RISC-like instructions. 

The IR makes LLVM versatile and flexible as well as 



language-independent and is amenable data flow 

representations. 

 

1.3. LLVM in CHiMPS compilation flow 
 

The current LCC based frontend of CHiMPS 

compiler [1] is known to have some serious drawbacks 

as shown in Section 2. In the work presented in this 

paper, LLVM is employed to improve these 

shortcomings and to investigate the ability to do high 

level program transformations that better support the 

CHiMPS architecture. Figure 1 illustrates the 

compilation flows of the original Xilinx CHiMPS. The 

LLVM backend part is aimed at substituting for 

CHiMPS HLL compiler. In the following sections, the 

implementation details are discussed. 

 

 

 
 

Figure 1. Compilation flow of Xilinx CHiMPS 

compiler. 

 

1.4. Related work 
 

Several research and commercial HLL to FPGA 

compilers are currently available [19-27]. Although 

their implementations differ significantly, the general 

framework of compilation strategies is the same: high 

level source code is translated into a low-level 

hardware language, such as VHDL or Verilog. 

The idea of the frontend optimization strategy using 

LLVM has been proven by the Trident compiler [19]. 

Trident’s framework is similar to LLVM-CHiMPS 

compilation except that Trident compiler is used 

instead of CHiMPS backend.  Also in our LLVM-

CHiMPS compiler a more aggressive set of 

optimization techniques is implemented in the LLVM 

frontend whereas in the Trident’s approach many 

optimizations are pushed down to the Trident’s 

backend. 

ROCCC compiler [20] is another example of a 

compiler that translates HLL code into highly parallel 

and optimized circuits.  Instead of using LLVM 

frontend and CHiMPS backend, the ROCCC compiler 

is built on the SUIF2 and Machine-SUIF [29, 30] 

platforms, with the SUIF2 platform being used to 

process optimizations while the Machine-SUIF 

platform is used to further specialize for the hardware 

and generate VHDL. 

On the commercial side, several HLL compilers are 

available including Mitrion-C [26], Impulse-C [25], 

DIME-C [27], and MAP-C [28].  These compilers, 

however, are proprietary and support only a few 

reconfigurable computing systems. 

In our LLVM-CHiMPS approach, we take 

advantage of the optimization techniques implemented 

in the open-source LLVM compiler and of the FPGA 

hardware knowledge applied to the backend CHiMPS 

compiler developed by Xilinx. 

 

2. Examples of known limitations in Xilinx 

CHiMPS compiler 
 

Original Xilinx CHiMPS compiler has some 

limitations that make it inconvenient and difficult for 

programming. For example, legal high level 

expressions in HLL code sometimes need to be 

paraphrased for CHiMPS compilation. Consider the 

ANSI C code shown in Figure 2. 

 

 
char* foo (int select, char* brTid, char* brFid) { 
 if (select)   

 return brTid; 
return brFid; 
} 
 
Figure 2. Simple code that fails in Xilinx CHiMPS 

compiler 

 



for (i = 0; i < n; i++) { } 

 
for (i=0; i<=n; i++)  { } 
for (i=0; i<n; i+=2)  { } 
for (i=1;  i<n;  i++)  { } 

 
Figure 3. (a) Supported and (b) unsupported expressions of for loop construct 

 

 

 
int foo() { 
  int n; 
  int k=0; 
  for (n=0; n<10; n++) 
    k+=n; 
 
  return k; 
} 
 

Source code 

 
Enter foo; 
reg k, n 
add 0;k 
reg temp0:1 
nfor l0;10;n 
        add k,n;k 
end l0 
exit foo; k 
 
CTL from Xilinx CHiMPS compiler 

 

 
define i32 @foo() nounwind  { 
entry: 
        ret i32 45 
} 
 
 
 
 
 

LLVM IR 

Figure 4. XIlinx CHiMPS compiler does not employ common optimization techniques. 

 

 

This simple code fails because two return 

statements are used in a single function, and although 

this is legal in ANSI C, the Xilinx CHiMPS frontend 

does not support multiple returns.  

Figure 3a shows the only form of for statement that 

is fully supported by the Xilinx CHiMPS compiler. All 

other uses of for statement, such as shown in Figure 3b 

are not guaranteed to produce correct code [16]. 

A very significant weakness of the Xilinx CHiMPS 

compiler frontend is that no optimizations are carried 

out during compilation [17]. Figure 4 depicts an 

example for a simple summation from 0 to 9 that yields 

45, and is not optimized at all by the CHiMPS frontend. 

The CTL code emitted is almost directly related to the 

source code, although this kind of a simple high level 

code is commonly optimized at the compilation time, 

as shown in the LLVM IR, the right column in Figure 4. 

These serious drawbacks in CHiMPS can be 

improved using LLVM as a frontend which offers more 

stable compilation with numerous global optimizations 

and the potential for significant program 

transformations. 

 

3. From LLVM to CHiMPS 
 

As shown in Figure 1, our approach is to use LLVM 

as the frontend to generate CTL code instead of the 

Xilinx CHiMPS frontend. This section describes how 

LLVM is modified to meet this goal. LLVM has its 

own virtual instruction set which is a low-level IR that 

uses RISC-like target independent instructions. Every 

LLVM backend for a specific target is based on this 

LLVM IR.  

In the following sections, overall comparison of 

instructions at two different levels is exposed. While 

LLVM instructions are low level, CHiMPS target 

language defines low level, as well as some high level 

instructions such as for and nfor, which are similar to 

for statement in C language. The difference between 

these two levels is critical in this implementation of 

LLVM-CHiMPS, and so it needs to be discussed in 

more detail. Readers are directed to refer to the LLVM 

and CHiMPS documentation [2, 3, 5] for more detailed 

syntax, semantics and examples of the instructions for 

CHiMPS and LLVM. 

 

3.1. Implementation of low level 

representations in CHiMPS 
 

LLVM is intended to support global optimization 

which is one of the motivations for using it in this 

work. Additionally, LLVM’s simple RISC-like 

instructions are quite similar to CHiMPS instructions 

which are also similar to traditional microprocessor 

instructions, so there is a good connection between 

these models and a good starting point for LLVM-

CHiMPS. 

 



 
 Integer arithmetic 

- add, sub, multiply, divide, cmp 

 Floating-point arithmetic 

- i2f, f2i, fadd, fsub, fmultiply, fdivide, fcmp 

 Logical operations 

- and, or, xor, not, shl, shr 

 
 Binary operations 

- add, sub, mul, udiv, sdiv, fdiv, urem, srem, frem 

 Bitwise binary operations 

- shl, lshr, ashr, and, or, xor 

 Other operations 

- icmp, fcmp, … 

 Conversion operations 

- sitofp, fptosi, … 

 
Figure 5. Arithmetic and logical instructions in (a) CHiMPS and (b) LLVM  

 
 

 

 Pseudo-instructions 

- reg, enter, exit, assign, foreign, call 

 
Figure 6. CHiMPS pseudo-instructions 

 
 

 

 Standard memory access instructions 

- memread, memwrite 

 

 

 Memory access and addressing operations 

- load, store, … 

 

Figure 7. Memory access instructions in (a) CHiMPS and (b) LLVM 

 

 

CHiMPS also has common instructions for 

arithmetic and logical operations. Figure 5 enumerates 

those instructions and the counterparts in the current 

LLVM IR (version 2.2). As shown in Figure 5, there is 

a great deal of similarity between the LLVM IR and 

CTL instructions, although classification of them is 

slightly different. Thus, LLVM IR can be readily 

translated into CHiMPS counterparts.  

Pseudo-instructions in CHiMPS shown in Figure 6 

are easily handled because such instructions as reg, 

enter and exit are nothing more than declaration of 

registers and notification of start and end of a function. 

Since version 2.0 of LLVM, integers have had signless 

types such as i8, i16 and i32 instead of ubyte, sbyte, 

short and so on. This bit width information can be used 

to describe registers in CTL whose width is not the 

default 32 bits. When copying the registers to a new 

size, specification of a bit width may be necessary, 

where it is useful. The other instructions for function 

call are easily associated with call instruction in LLVM 

IR. The memory access instructions also show close 

resemblance as shown in Figure 7.  

The LLVM backend that we implemented benefits 

from the similarities between the two intermediate 

languages for emission of CTL. Example source code 

on the left in Figure 8 is a fragment of Mersenne 

Twister code by Makoto et al. [18]. Figure 8 shows the 

resulting code from Xilinx CHiMPS (middle column) 

and our LLVM-CHiMPS (right column) compilers. 

Comparison of the number of cycles counted from the 

CHiMPS simulator for each of CTL from LLVM and 

CHiMPS shows promising results: 81 cycles are spent 

for CTL from LLVM-CHiMPS compared to 105 cycles 

for Xilinx CHiMPS, which demonstrates the 

effectiveness of our LLVM optimizations. As shown in 

the figure, a good optimization is done for the high 

level source code. 

 

 



 
 
void testmt(long s, double* a) 
{ 

char h = mtrandinit(s); 
*a = s; 
*a *= mtrandint31(h); 
*a += mtrandint32(h); 
*a += mtrandreal1(h); 
*a += (mtrandreal1(h) / mtrandreal2(h)); 
*a -= (*a * mtrandreal3(h) * mtrandres53(h)); 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source code 
 

 
Enter testmt; s,a 
reg h:8 
reg temp0:64, temp1, temp2, temp3:64, 
temp4:64, temp5:64, temp6:u, temp7, 
temp8:64, temp9:64, temp10:64, 
temp11:u, temp12:64, temp13:64, 
temp14:64, temp15:64, temp16, 
temp17:64, temp18:64, temp19:64, 
temp20:64, temp21, temp22:64, 
temp23:64, temp24:64, temp25:64, 
temp26:64, temp27, temp28:64, 
temp29:64, temp30:64, temp31:64 
call mtrandinit;s;h 
i2f s;temp0 
write a;temp0;8;;      
call mtrandint31;h;temp1 
add a;temp2 
read 0;;8; temp2;;temp3      
i2f temp1;temp4 
fmultiply temp3,temp4;temp5 
write temp2;temp5;8;;      
call mtrandint32;h;temp6 
add a;temp7 
read 0;;8; temp7;;temp8      
i2f temp6>>1;temp9 
fmultiply 2.0,temp9;temp10 
and temp6,1;temp11 
i2f temp11;temp12 
fadd temp10,temp12;temp13 
fadd temp8,temp13;temp14 
write temp7;temp14;8;;      
call mtrandreal1;h;temp15 
add a;temp16 
read 0;;8; temp16;;temp17      
fadd temp17,temp15;temp18 
write temp16;temp18;8;;      
call mtrandreal1;h;temp19 
call mtrandreal2;h;temp20 
add a;temp21 
read 0;;8; temp21;;temp22      
fdivide temp19,temp20;temp23 
fadd temp22,temp23;temp24 
write temp21;temp24;8;;      
call mtrandreal3;h;temp25 
call mtrandres53;h;temp26 
add a;temp27 
read 0;;8; temp27;;temp28      
fmultiply temp28,temp25;temp29 
fmultiply temp29,temp26;temp30 
fsub temp28,temp30;temp31 
write temp27;temp31;8;;      
exit testmt 
 

CTL from Xilinx CHiMPS 
 

 
Enter testmt; s,a 
reg tmp:32u, tmp_1:8, tmp1:64, tmp5, 
tmp5_1:64, tmp6:64, tmp12:32u, 
tmp12_1:64, tmp13:64, tmp19:64, 
tmp20:64, tmp26:64, tmp29:64, 
tmp30:64, tmp31:64, tmp39:64, 
tmp40:64, tmp43:64, tmp44:64, 
tmp45:64 
add s;tmp 
call mtrandinit; tmp;tmp_1 
i2f s;tmp1 
write a; tmp1;8;; 
call mtrandint31; tmp_1;tmp5 
i2f tmp5;tmp5_1 
fmultiply tmp1, tmp5_1;tmp6 
write a; tmp6;8;; 
call mtrandint32; tmp_1;tmp12 
i2f tmp12;tmp12_1 
fadd tmp6, tmp12_1;tmp13 
write a; tmp13;8;; 
call mtrandreal1; tmp_1;tmp19 
fadd tmp13, tmp19;tmp20 
write a; tmp20;8;; 
call mtrandreal1; tmp_1;tmp26 
call mtrandreal2; tmp_1;tmp29 
fdivide tmp26, tmp29;tmp30 
fadd tmp20, tmp30;tmp31 
write a; tmp31;8;; 
call mtrandreal3; tmp_1;tmp39 
fmultiply tmp31, tmp39;tmp40 
call mtrandres53; tmp_1;tmp43 
fmultiply tmp40, tmp43;tmp44 
fsub tmp31, tmp44;tmp45 
write a; tmp45;8;; 
exit testmt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CTL from LLVM 
 

Figure 8. CTL from CHiMPS and LLVM 
 



 
 Conditionals 

- demux, branch, unbranch, mux, switchass 

 

 
 Branching instructions 

- br, switch, select, … 

 

Figure 9. Instructions for conditional jump in (a) Xilinx CHiMPS and (b) LLVM 

 

 

 
int foo(int k, int j) { 
  if (j < 300) 

k = 200 + j; 
return k; 

} 
 
 
 
 
 
 
 

Source code 

 

 
Enter foo; k,j 
reg temp0:1 
cmp j,300;;temp0 
demux m0;temp0;b1;b0 
branch b0 

      add j,200;k 
unbranch b0 
branch b1 
unbranch b1 
mux m0 
exit foo; k 
 

CTL 

 

 
define i32 @foo(i32 %k, i32 %j) nounwind  { 
entry: 
%tmp2 = icmp slt i32 %j, 300           
br i1 %tmp2, label %bb, label %Return 
 
bb:     ; preds = %entry 
%tmp5 = add i32 %j, 200        
ret i32 %tmp5 
 
Return:   
ret i32 %k 
} 

LLVM IR 

 
Figure 10. Conditional jumps in CHiMPS and LLVM 

 

 

3.2. Implementation of high level 

representations in CHiMPS 
 

CTL also defines higher level control flow 

instructions than those shown in the previous section. 

These constructs support conditionals and looping 

instructions. Conditional instructions can be 

represented in a relatively easy way with the current 

LLVM IR grammar but the others require more 

support. 

 

3.2.1. Conditional instructions 

 

Branch and conditionals such as if in C must behave 

sequentially. In this case, instructions for conditional 

jump are necessary as shown in Figure 9 [2]. 

Implementation of these instructions in the LLVM 

backend for CHiMPS is slightly different from those in 

the previous section. In LLVM, the high level source 

code is broken down during compilation into atomic 

units called basic blocks that are used for global 

optimization purposes. Therefore, the conditional jump 

is represented as the control flow among basic blocks 

in LLVM IR. 

Consider a simple code that does summation based 

on a condition shown in Figure 10. A CTL 

representation shown in the middle is similar to the 

high level source code, whereas the LLVM code shown 

on the right is fragmented into three basic blocks. At 

the entry block, the ensuing control flow is determined 

to fall into the bb block only when the condition is 

satisfied at the line of br i1 %tmp2, label %bb, label 

%Return line where the br instruction is used to make 

bridges among basic blocks. This is because of the 

characteristic of LLVM which breaks the source code 

for optimization purpose during compilation, as 

mentioned above. 

Careful observations after several compilations of 

HLL source codes using LLVM reveal that comparison 

instructions such as icmp and branch instructions such 

as br are kept together in a basic block when a 

conditional instruction is used in the source code, as 

shown on the right in Figure 10. Because of this 

consistency, LLVM-CHiMPS can translate this code 

into the conditional representation in CTL even though 

CTL does not have the notion of a basic block. Each 

branched basic block in LLVM IR is considered a 

single branch in CTL. A branch location identified by a 

line that begins with a br instruction can also be simply 

converted into a branching line starts with demux in 

CTL. 

 

 



 
int foo() { 
 

int i, j, k, n; 
int sum = 0; 

 
for (i=0; i<10; i++) { 

sum += i; 
for (j=0; j<10; j++) { 

sum += 2; 
for (k=0; k<10; k++) { 

sum += k; 
for (n=0; n<10; n++) 

sum += 3; 
} 

} 
} 
 
return sum; 

} 
 
 
 
 
 

Source code 

 

 
Enter foo;  
reg i, sum 
add 0;sum 
reg temp3:1 
nfor l3;10;i 

reg j 
add sum,i;sum 
reg temp2:1 
nfor l2;10;j 

reg k 
add sum,2;sum 
reg temp1:1 
nfor l1;10;k 

reg n 
add sum,k;sum 
reg temp0:1 
nfor l0;10;n 

add sum,3;sum 
end l0 

end l1 
end l2 

end l3 
exit foo; sum 
 

CTL from Xilinx CHiMPS 

 
Enter foo;  
reg phi_indvar9, phi_sum, indvar_next, 
indvar9_rl, phi_sum_rl, tmp4, tmp5 
add 0;phi_indvar9 
add 0;phi_sum 
nfor l0;10;indvar_next 

add phi_sum;phi_sum_rl 
add phi_indvar9;indvar9_rl 
add indvar9_rl, 3470;tmp4 
add phi_sum_rl, tmp4;tmp5 
add indvar9_rl, 1;indvar_next 
add indvar_next;phi_indvar9 
add tmp5;phi_sum 

end l0 
exit foo; tmp5 
 
 
 
 
 
 
 
 
 

CTL from LLVM 

Figure 11. CTL from Xilinx CHiMPS and LLVM-CHiMPS 

 

 

LLVM IR also offers a simple conditional 

instruction, select, which is intended for selection of a 

value based on a condition without branching. This 

instruction has an analogue in CTL, switchass, so it is 

easily translated. 

 

3.2.2. Looping instructions 

 

The major issue in implementing the LLVM 

backend for CTL generation is related to high level 

looping in CTL. CTL defines high level instructions 

such as for and nfor to support loops which are similar 

to for statement in C, while there are no explicit 

instructions for looping in LLVM because LLVM is a 

low-level representation with loops represented by the 

control flow among basic blocks like the conditional 

jump case in Section 3.2.1. For this reason, in order to 

construct the high level loops in CTL, it is necessary to 

detect loops in LLVM IR and reorganize to dress them 

in HL. However, the way loops are handled is quite 

different from conditional jump because back path is 

employed to bring the control flow back to a loop entry 

point. Furthermore, certain patterns in the control flow 

may yield unstructuredness in a loop, which is also 

known as ‘improper regions’. This unstructuredness is 

usually caused by multiple entry strongly connected 

components. In this case, jumps into the middle of 

loops are found so the loop header does not dominate 

some of nodes in the loop [9]. Therefore, these 

improper regions in a loop need to be dealt with 

cautiously. Although unstructuredness in a loop is not 

frequent, it is sometimes found so the translation from a 

low level to a high level may be complex. There have 

been a number of efforts to construct or restructure 

effective loops from low level analysis with Control 

Flow Graph (CFG) and others [6-14]. 
However, most computational kernels that LLVM-

CHiMPS is intended for do not require statements such 

as goto, break, continue, or switch/case, and are not 

supported by CHiMPS as of release Alpha 0.12 [15]. It 

seems reasonable to consider for loops, which leaves 

the control flow always reducible. If we expect only 

reducible flow graphs, each retreating edge shown in 

the flow graph can be associated with a natural loop 

because all retreating edges are back edges [6]. A 

natural loop is defined to have a single entry node 



which is the loop header. In order to detect these kinds 

of loops, adopting the notion of Control Dependence 

Graph (CDG) is quite helpful. Cytron et al. [14] used 

five steps to derive CDG from CFG by employing the 

concept of reversed CFG, dominator tree and 

dominance frontier. Although this derivation of CDG is 

not hard, it was already implemented in LLVM as a 

separate natural loop analysis pass. 

Another issue for reconstruction of loops is related 

to the fact that LLVM uses an SSA based 

representation. SSA is gaining popularity because of its 

efficiency in representing data flow in a code, which 

also expedites analysis and optimization of a program 

[13, 14]. However, SSA is just an intermediate 

representation for compilation purpose so the phi-

nodes need to be replaced with properly copied 

instructions for the construction of high level loops. 

Although Cytron et al. [14] considered replacing phi-

nodes with reasonably placed copy instructions, the 

implementation suffered from lost-copy and swap 

problems [13]. For these reasons, Briggs et al. [13] 

suggests an alternative approach to properly destruct 

the phi-functions. This behavior was implemented in 

LLVM as a single function which is DemotePHI() 

since version 2.1. 

As introduced above, loops are also represented by 

the control flow among basic blocks in LLVM IR. 

Therefore, a comparison instruction such as icmp and 

branch instructions such as br are also observed 

together in a basic block such as conditional jump. It 

may seem to be difficult to identify if a basic block is 

related to loops or one-way conditional jump. 

However, it is easily detectable with a loop analysis 

pass which informs us which basic block is associated 

with which loop. 

In this study, the LLVM analysis and transformation 

passes introduced above are used to construct the high 

level looping representation in CTL. Using the LLVM 

passes, it is possible to translate high-level CTL from 

LLVM IR also with optimizations. 

As an example, consider a code sample given in 

Figure 11 that yields 34745 as the result. CTL from 

LLVM-CHiMPS requires 2,110 cycles to execute in 

simulator and that from Xilinx CHiMPS requires 

2,711,409 cycles which is more than 1,000 times as 

many. All of the inner loops in the source code are 

highly optimized by LLVM, thus resulting in better 

overall performance.  

However, there is limit to optimization using LLVM 

for CTL because CTL is initially intended to be 

generated at compile time by CHiMPS so LLVM does 

not have a chance to dynamically optimize the source 

code at run time. The optimization shown in Figure 11 

is constant expression evaluation also known as 

constant folding, so evaluated constant expressions at 

compile time are simply replaced.  On the other hand, 

Figure 12 shows a source code for matrix 

multiplication in which no such expressions can be 

easily optimized at compile time. Accordingly, CTL 

generated from LLVM is not optimized as well. For the 

multiplication of two 50-by-50 matrices, CTL from 

LLVM uses 1,500,068 cycles in the simulator while 

that from Xilinx CHiMPS requires only 1,494,968 

cycles. Now that LLVM IR uses SSA based 

representation, it needs some copy instructions in the 

revised codes for CTL, while demoting the phi-nodes, 

which made the number of simulation cycles a little bit 

higher than that from Xilinx CHiMPS. Nonetheless it is 

evident that CTL from LLVM has more chances to 

have improved performance through optimizations at 

compile time, so this approach is still promising. 

 

4. Conclusions and future work 
 

We have described our implementation of an LLVM 

backend for generation of CTL. We also have shown a 

few examples where global optimizations performed by 

LLVM during compilation time greatly reduced the 

number of cycles needed to execute the loop.  The 

major difficulty in this implementation was related to a 

few instructions, such as for, with high level 

characteristics in CTL. For such instructions, one-to-

one correspondence between CTL and LLVM IR could 

not be found and therefore analysis and transformation 

LLVM passes were used based on reducibility and 

 

void matmul (long* a, long* b, long* c, long sz)  
{ 

long i, j, k; 
 
for (i = 0; i < sz; i++)  { 

long offset = i * sz; 
long* row = a + offset; 
long* out = c + offset; 
for (j = 0; j < sz; j++)  { 

long* col = b + j; 
out[j] = 0; 
for (k = 0; k < sz; k++) 

out[j] += row[k] * col[k*sz]; 
} 

} 
} 
 

Figure 12. Source code for matrix multiplication 

 



normal loop assumptions. LLVM is a fast evolving 

open source project contributed by many developers. 

For this reason, many optimization functions are 

consistently being added and there appear more 

chances to leverage optimizations and transformations 

for LLVM-CHiMPS in the future. 

The method discussed in this paper is based on 

LLVM IR. Every instruction in CTL is translated from 

the current LLVM IR grammar. This means that we 

need to consider a new translation whenever the LLVM 

IR grammar changes, which is an ongoing process. 

When LLVM 2.0 was released, many changes were 

introduced such as representation of data types. LLVM 

also has backends for various target machines so these 

backends generate optimized assembly codes from 

LLVM IR. A de-compilation tool [7, 8] can be 

implemented to emit CTL code after analyzing one of 

these optimized machine assembly codes. This may be 

advantageous because the generation of CTL can be 

independent of the version update of LLVM IR. 

In this paper, only simulation was carried out. In our 

future work, we will consider application kernels on the 

real hardware. 
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