
LLVM-CHiMPS: Compilation Environment for FPGAs Using LLVM

Compiler Infrastructure and CHiMPS Computational Model

Seung J. Lee
1
, David K. Raila

2
, Volodymyr V. Kindratenko

1

1) National Center for Supercomputing Applications (NCSA)

2) University of Illinois at Urbana-Champaign (UIUC)

lee225@uiuc.edu, raila@illinois.edu, kindr@ncsa.uiuc.edu

Abstract

CHiMPS (Compiling High level language to

Massively Pipelined System) system, developed by

Xilinx is gaining popularity due to its convenient

computational model and architecture for field

programmable gate array computing. The CHiMPS

system utilizes CHiMPS target language as an

intermediate representation to bridge between the high

level language and the data flow architecture

generated from it. However, currently the CHiMPS

frontend does not provide many commonly used

optimizations and has some use restrictions. In this

paper we present an alternative compiler environment

based on low level virtual machine compiler

environment extended to generate CHiMPS target

language code for the CHiMPS architecture. Our

implementation provides good support for global

optimizations and analysis and overcomes many

limitations of the original Xilinx CHiMPS compiler.

Simulation results from codes based on this approach

show to outperform those obtained with the original

CHiMPS compiler.

1. Introduction

1.1. CHiMPS

Recently, systems have been developed that employ

Field Programmable Gate Arrays (FPGAs) as

application accelerators. In order to execute

applications on such systems, the application

programmer extracts computationally intensive kernel

from the application, reorganizes data structures to

accommodate memory subsystem, and rewrites the

kernel in the highly specialized environment for FPGA

execution. The CHiMPS (Compiling High level

language to Massively Pipelined System) system [1],

developed by Xilinx, employs a unique approach by

imposing a computational model on the FPGA

subsystem, treating it as a virtualized hardware

architecture that is convenient for high level code

compilation. The CHiMPS compiler transforms high

level language (HLL) codes, currently written in ANSI

C, to CHiMPS target language (CTL), which is

combined with runtime support for the FPGA runtime

environment and assembled using the CHiMPS

assembler and FPGA design tools to a hardware data

flow implementation [2]. The instructions defined in

CTL have a close resemblance to a traditional

microprocessor instruction set which is convenient for

compiling, optimizing, and should be familiar to

programmers [3, 4]. This effectively bridges the gap

between hardware design and traditional software

development and only imposes minor costs related to

runtime overhead support to virtualize the architecture.

1.2. LLVM

Low level virtual machine (LLVM) compiler [5],

originally developed at the University of Illinois, is

now an open source compiler project that is aimed at

supporting global optimizations. It has many attractive

features for program analysis and optimization. LLVM

has a GCC based C and C++ frontend as well as its

own frontend, Clang, that offers modular and reusable

components for building compilers that are target-

independent and easy to use. This reduces the time and

effort to build a particular compiler. Static backends

already implemented in LLVM including X86, X86-64,

PowerPC 32/64, ARM and others share those

components. A notable feature of LLVM is its low

level static single assignment (SSA) form virtual

instruction set which is a low-level intermediate

representation (IR) that uses RISC-like instructions.

The IR makes LLVM versatile and flexible as well as

language-independent and is amenable data flow

representations.

1.3. LLVM in CHiMPS compilation flow

The current LCC based frontend of CHiMPS

compiler [1] is known to have some serious drawbacks

as shown in Section 2. In the work presented in this

paper, LLVM is employed to improve these

shortcomings and to investigate the ability to do high

level program transformations that better support the

CHiMPS architecture. Figure 1 illustrates the

compilation flows of the original Xilinx CHiMPS. The

LLVM backend part is aimed at substituting for

CHiMPS HLL compiler. In the following sections, the

implementation details are discussed.

Figure 1. Compilation flow of Xilinx CHiMPS

compiler.

1.4. Related work

Several research and commercial HLL to FPGA

compilers are currently available [19-27]. Although

their implementations differ significantly, the general

framework of compilation strategies is the same: high

level source code is translated into a low-level

hardware language, such as VHDL or Verilog.

The idea of the frontend optimization strategy using

LLVM has been proven by the Trident compiler [19].

Trident’s framework is similar to LLVM-CHiMPS

compilation except that Trident compiler is used

instead of CHiMPS backend. Also in our LLVM-

CHiMPS compiler a more aggressive set of

optimization techniques is implemented in the LLVM

frontend whereas in the Trident’s approach many

optimizations are pushed down to the Trident’s

backend.

ROCCC compiler [20] is another example of a

compiler that translates HLL code into highly parallel

and optimized circuits. Instead of using LLVM

frontend and CHiMPS backend, the ROCCC compiler

is built on the SUIF2 and Machine-SUIF [29, 30]

platforms, with the SUIF2 platform being used to

process optimizations while the Machine-SUIF

platform is used to further specialize for the hardware

and generate VHDL.

On the commercial side, several HLL compilers are

available including Mitrion-C [26], Impulse-C [25],

DIME-C [27], and MAP-C [28]. These compilers,

however, are proprietary and support only a few

reconfigurable computing systems.

In our LLVM-CHiMPS approach, we take

advantage of the optimization techniques implemented

in the open-source LLVM compiler and of the FPGA

hardware knowledge applied to the backend CHiMPS

compiler developed by Xilinx.

2. Examples of known limitations in Xilinx

CHiMPS compiler

Original Xilinx CHiMPS compiler has some

limitations that make it inconvenient and difficult for

programming. For example, legal high level

expressions in HLL code sometimes need to be

paraphrased for CHiMPS compilation. Consider the

ANSI C code shown in Figure 2.

char* foo (int select, char* brTid, char* brFid) {
 if (select)

 return brTid;
return brFid;
}

Figure 2. Simple code that fails in Xilinx CHiMPS

compiler

for (i = 0; i < n; i++) { }

for (i=0; i<=n; i++) { }
for (i=0; i<n; i+=2) { }
for (i=1; i<n; i++) { }

Figure 3. (a) Supported and (b) unsupported expressions of for loop construct

int foo() {
 int n;
 int k=0;
 for (n=0; n<10; n++)
 k+=n;

 return k;
}

Source code

Enter foo;
reg k, n
add 0;k
reg temp0:1
nfor l0;10;n
 add k,n;k
end l0
exit foo; k

CTL from Xilinx CHiMPS compiler

define i32 @foo() nounwind {
entry:
 ret i32 45
}

LLVM IR

Figure 4. XIlinx CHiMPS compiler does not employ common optimization techniques.

This simple code fails because two return

statements are used in a single function, and although

this is legal in ANSI C, the Xilinx CHiMPS frontend

does not support multiple returns.

Figure 3a shows the only form of for statement that

is fully supported by the Xilinx CHiMPS compiler. All

other uses of for statement, such as shown in Figure 3b

are not guaranteed to produce correct code [16].

A very significant weakness of the Xilinx CHiMPS

compiler frontend is that no optimizations are carried

out during compilation [17]. Figure 4 depicts an

example for a simple summation from 0 to 9 that yields

45, and is not optimized at all by the CHiMPS frontend.

The CTL code emitted is almost directly related to the

source code, although this kind of a simple high level

code is commonly optimized at the compilation time,

as shown in the LLVM IR, the right column in Figure 4.

These serious drawbacks in CHiMPS can be

improved using LLVM as a frontend which offers more

stable compilation with numerous global optimizations

and the potential for significant program

transformations.

3. From LLVM to CHiMPS

As shown in Figure 1, our approach is to use LLVM

as the frontend to generate CTL code instead of the

Xilinx CHiMPS frontend. This section describes how

LLVM is modified to meet this goal. LLVM has its

own virtual instruction set which is a low-level IR that

uses RISC-like target independent instructions. Every

LLVM backend for a specific target is based on this

LLVM IR.

In the following sections, overall comparison of

instructions at two different levels is exposed. While

LLVM instructions are low level, CHiMPS target

language defines low level, as well as some high level

instructions such as for and nfor, which are similar to

for statement in C language. The difference between

these two levels is critical in this implementation of

LLVM-CHiMPS, and so it needs to be discussed in

more detail. Readers are directed to refer to the LLVM

and CHiMPS documentation [2, 3, 5] for more detailed

syntax, semantics and examples of the instructions for

CHiMPS and LLVM.

3.1. Implementation of low level

representations in CHiMPS

LLVM is intended to support global optimization

which is one of the motivations for using it in this

work. Additionally, LLVM’s simple RISC-like

instructions are quite similar to CHiMPS instructions

which are also similar to traditional microprocessor

instructions, so there is a good connection between

these models and a good starting point for LLVM-

CHiMPS.

 Integer arithmetic

- add, sub, multiply, divide, cmp

 Floating-point arithmetic

- i2f, f2i, fadd, fsub, fmultiply, fdivide, fcmp

 Logical operations

- and, or, xor, not, shl, shr

 Binary operations

- add, sub, mul, udiv, sdiv, fdiv, urem, srem, frem

 Bitwise binary operations

- shl, lshr, ashr, and, or, xor

 Other operations

- icmp, fcmp, …

 Conversion operations

- sitofp, fptosi, …

Figure 5. Arithmetic and logical instructions in (a) CHiMPS and (b) LLVM

 Pseudo-instructions

- reg, enter, exit, assign, foreign, call

Figure 6. CHiMPS pseudo-instructions

 Standard memory access instructions

- memread, memwrite

 Memory access and addressing operations

- load, store, …

Figure 7. Memory access instructions in (a) CHiMPS and (b) LLVM

CHiMPS also has common instructions for

arithmetic and logical operations. Figure 5 enumerates

those instructions and the counterparts in the current

LLVM IR (version 2.2). As shown in Figure 5, there is

a great deal of similarity between the LLVM IR and

CTL instructions, although classification of them is

slightly different. Thus, LLVM IR can be readily

translated into CHiMPS counterparts.

Pseudo-instructions in CHiMPS shown in Figure 6

are easily handled because such instructions as reg,

enter and exit are nothing more than declaration of

registers and notification of start and end of a function.

Since version 2.0 of LLVM, integers have had signless

types such as i8, i16 and i32 instead of ubyte, sbyte,

short and so on. This bit width information can be used

to describe registers in CTL whose width is not the

default 32 bits. When copying the registers to a new

size, specification of a bit width may be necessary,

where it is useful. The other instructions for function

call are easily associated with call instruction in LLVM

IR. The memory access instructions also show close

resemblance as shown in Figure 7.

The LLVM backend that we implemented benefits

from the similarities between the two intermediate

languages for emission of CTL. Example source code

on the left in Figure 8 is a fragment of Mersenne

Twister code by Makoto et al. [18]. Figure 8 shows the

resulting code from Xilinx CHiMPS (middle column)

and our LLVM-CHiMPS (right column) compilers.

Comparison of the number of cycles counted from the

CHiMPS simulator for each of CTL from LLVM and

CHiMPS shows promising results: 81 cycles are spent

for CTL from LLVM-CHiMPS compared to 105 cycles

for Xilinx CHiMPS, which demonstrates the

effectiveness of our LLVM optimizations. As shown in

the figure, a good optimization is done for the high

level source code.

void testmt(long s, double* a)
{

char h = mtrandinit(s);
*a = s;
*a *= mtrandint31(h);
*a += mtrandint32(h);
*a += mtrandreal1(h);
*a += (mtrandreal1(h) / mtrandreal2(h));
*a -= (*a * mtrandreal3(h) * mtrandres53(h));

}

Source code

Enter testmt; s,a
reg h:8
reg temp0:64, temp1, temp2, temp3:64,
temp4:64, temp5:64, temp6:u, temp7,
temp8:64, temp9:64, temp10:64,
temp11:u, temp12:64, temp13:64,
temp14:64, temp15:64, temp16,
temp17:64, temp18:64, temp19:64,
temp20:64, temp21, temp22:64,
temp23:64, temp24:64, temp25:64,
temp26:64, temp27, temp28:64,
temp29:64, temp30:64, temp31:64
call mtrandinit;s;h
i2f s;temp0
write a;temp0;8;;
call mtrandint31;h;temp1
add a;temp2
read 0;;8; temp2;;temp3
i2f temp1;temp4
fmultiply temp3,temp4;temp5
write temp2;temp5;8;;
call mtrandint32;h;temp6
add a;temp7
read 0;;8; temp7;;temp8
i2f temp6>>1;temp9
fmultiply 2.0,temp9;temp10
and temp6,1;temp11
i2f temp11;temp12
fadd temp10,temp12;temp13
fadd temp8,temp13;temp14
write temp7;temp14;8;;
call mtrandreal1;h;temp15
add a;temp16
read 0;;8; temp16;;temp17
fadd temp17,temp15;temp18
write temp16;temp18;8;;
call mtrandreal1;h;temp19
call mtrandreal2;h;temp20
add a;temp21
read 0;;8; temp21;;temp22
fdivide temp19,temp20;temp23
fadd temp22,temp23;temp24
write temp21;temp24;8;;
call mtrandreal3;h;temp25
call mtrandres53;h;temp26
add a;temp27
read 0;;8; temp27;;temp28
fmultiply temp28,temp25;temp29
fmultiply temp29,temp26;temp30
fsub temp28,temp30;temp31
write temp27;temp31;8;;
exit testmt

CTL from Xilinx CHiMPS

Enter testmt; s,a
reg tmp:32u, tmp_1:8, tmp1:64, tmp5,
tmp5_1:64, tmp6:64, tmp12:32u,
tmp12_1:64, tmp13:64, tmp19:64,
tmp20:64, tmp26:64, tmp29:64,
tmp30:64, tmp31:64, tmp39:64,
tmp40:64, tmp43:64, tmp44:64,
tmp45:64
add s;tmp
call mtrandinit; tmp;tmp_1
i2f s;tmp1
write a; tmp1;8;;
call mtrandint31; tmp_1;tmp5
i2f tmp5;tmp5_1
fmultiply tmp1, tmp5_1;tmp6
write a; tmp6;8;;
call mtrandint32; tmp_1;tmp12
i2f tmp12;tmp12_1
fadd tmp6, tmp12_1;tmp13
write a; tmp13;8;;
call mtrandreal1; tmp_1;tmp19
fadd tmp13, tmp19;tmp20
write a; tmp20;8;;
call mtrandreal1; tmp_1;tmp26
call mtrandreal2; tmp_1;tmp29
fdivide tmp26, tmp29;tmp30
fadd tmp20, tmp30;tmp31
write a; tmp31;8;;
call mtrandreal3; tmp_1;tmp39
fmultiply tmp31, tmp39;tmp40
call mtrandres53; tmp_1;tmp43
fmultiply tmp40, tmp43;tmp44
fsub tmp31, tmp44;tmp45
write a; tmp45;8;;
exit testmt

CTL from LLVM

Figure 8. CTL from CHiMPS and LLVM

 Conditionals

- demux, branch, unbranch, mux, switchass

 Branching instructions

- br, switch, select, …

Figure 9. Instructions for conditional jump in (a) Xilinx CHiMPS and (b) LLVM

int foo(int k, int j) {
 if (j < 300)

k = 200 + j;
return k;

}

Source code

Enter foo; k,j
reg temp0:1
cmp j,300;;temp0
demux m0;temp0;b1;b0
branch b0

 add j,200;k
unbranch b0
branch b1
unbranch b1
mux m0
exit foo; k

CTL

define i32 @foo(i32 %k, i32 %j) nounwind {
entry:
%tmp2 = icmp slt i32 %j, 300
br i1 %tmp2, label %bb, label %Return

bb: ; preds = %entry
%tmp5 = add i32 %j, 200
ret i32 %tmp5

Return:
ret i32 %k
}

LLVM IR

Figure 10. Conditional jumps in CHiMPS and LLVM

3.2. Implementation of high level

representations in CHiMPS

CTL also defines higher level control flow

instructions than those shown in the previous section.

These constructs support conditionals and looping

instructions. Conditional instructions can be

represented in a relatively easy way with the current

LLVM IR grammar but the others require more

support.

3.2.1. Conditional instructions

Branch and conditionals such as if in C must behave

sequentially. In this case, instructions for conditional

jump are necessary as shown in Figure 9 [2].

Implementation of these instructions in the LLVM

backend for CHiMPS is slightly different from those in

the previous section. In LLVM, the high level source

code is broken down during compilation into atomic

units called basic blocks that are used for global

optimization purposes. Therefore, the conditional jump

is represented as the control flow among basic blocks

in LLVM IR.

Consider a simple code that does summation based

on a condition shown in Figure 10. A CTL

representation shown in the middle is similar to the

high level source code, whereas the LLVM code shown

on the right is fragmented into three basic blocks. At

the entry block, the ensuing control flow is determined

to fall into the bb block only when the condition is

satisfied at the line of br i1 %tmp2, label %bb, label

%Return line where the br instruction is used to make

bridges among basic blocks. This is because of the

characteristic of LLVM which breaks the source code

for optimization purpose during compilation, as

mentioned above.

Careful observations after several compilations of

HLL source codes using LLVM reveal that comparison

instructions such as icmp and branch instructions such

as br are kept together in a basic block when a

conditional instruction is used in the source code, as

shown on the right in Figure 10. Because of this

consistency, LLVM-CHiMPS can translate this code

into the conditional representation in CTL even though

CTL does not have the notion of a basic block. Each

branched basic block in LLVM IR is considered a

single branch in CTL. A branch location identified by a

line that begins with a br instruction can also be simply

converted into a branching line starts with demux in

CTL.

int foo() {

int i, j, k, n;
int sum = 0;

for (i=0; i<10; i++) {

sum += i;
for (j=0; j<10; j++) {

sum += 2;
for (k=0; k<10; k++) {

sum += k;
for (n=0; n<10; n++)

sum += 3;
}

}
}

return sum;

}

Source code

Enter foo;
reg i, sum
add 0;sum
reg temp3:1
nfor l3;10;i

reg j
add sum,i;sum
reg temp2:1
nfor l2;10;j

reg k
add sum,2;sum
reg temp1:1
nfor l1;10;k

reg n
add sum,k;sum
reg temp0:1
nfor l0;10;n

add sum,3;sum
end l0

end l1
end l2

end l3
exit foo; sum

CTL from Xilinx CHiMPS

Enter foo;
reg phi_indvar9, phi_sum, indvar_next,
indvar9_rl, phi_sum_rl, tmp4, tmp5
add 0;phi_indvar9
add 0;phi_sum
nfor l0;10;indvar_next

add phi_sum;phi_sum_rl
add phi_indvar9;indvar9_rl
add indvar9_rl, 3470;tmp4
add phi_sum_rl, tmp4;tmp5
add indvar9_rl, 1;indvar_next
add indvar_next;phi_indvar9
add tmp5;phi_sum

end l0
exit foo; tmp5

CTL from LLVM

Figure 11. CTL from Xilinx CHiMPS and LLVM-CHiMPS

LLVM IR also offers a simple conditional

instruction, select, which is intended for selection of a

value based on a condition without branching. This

instruction has an analogue in CTL, switchass, so it is

easily translated.

3.2.2. Looping instructions

The major issue in implementing the LLVM

backend for CTL generation is related to high level

looping in CTL. CTL defines high level instructions

such as for and nfor to support loops which are similar

to for statement in C, while there are no explicit

instructions for looping in LLVM because LLVM is a

low-level representation with loops represented by the

control flow among basic blocks like the conditional

jump case in Section 3.2.1. For this reason, in order to

construct the high level loops in CTL, it is necessary to

detect loops in LLVM IR and reorganize to dress them

in HL. However, the way loops are handled is quite

different from conditional jump because back path is

employed to bring the control flow back to a loop entry

point. Furthermore, certain patterns in the control flow

may yield unstructuredness in a loop, which is also

known as ‘improper regions’. This unstructuredness is

usually caused by multiple entry strongly connected

components. In this case, jumps into the middle of

loops are found so the loop header does not dominate

some of nodes in the loop [9]. Therefore, these

improper regions in a loop need to be dealt with

cautiously. Although unstructuredness in a loop is not

frequent, it is sometimes found so the translation from a

low level to a high level may be complex. There have

been a number of efforts to construct or restructure

effective loops from low level analysis with Control

Flow Graph (CFG) and others [6-14].
However, most computational kernels that LLVM-

CHiMPS is intended for do not require statements such

as goto, break, continue, or switch/case, and are not

supported by CHiMPS as of release Alpha 0.12 [15]. It

seems reasonable to consider for loops, which leaves

the control flow always reducible. If we expect only

reducible flow graphs, each retreating edge shown in

the flow graph can be associated with a natural loop

because all retreating edges are back edges [6]. A

natural loop is defined to have a single entry node

which is the loop header. In order to detect these kinds

of loops, adopting the notion of Control Dependence

Graph (CDG) is quite helpful. Cytron et al. [14] used

five steps to derive CDG from CFG by employing the

concept of reversed CFG, dominator tree and

dominance frontier. Although this derivation of CDG is

not hard, it was already implemented in LLVM as a

separate natural loop analysis pass.

Another issue for reconstruction of loops is related

to the fact that LLVM uses an SSA based

representation. SSA is gaining popularity because of its

efficiency in representing data flow in a code, which

also expedites analysis and optimization of a program

[13, 14]. However, SSA is just an intermediate

representation for compilation purpose so the phi-

nodes need to be replaced with properly copied

instructions for the construction of high level loops.

Although Cytron et al. [14] considered replacing phi-

nodes with reasonably placed copy instructions, the

implementation suffered from lost-copy and swap

problems [13]. For these reasons, Briggs et al. [13]

suggests an alternative approach to properly destruct

the phi-functions. This behavior was implemented in

LLVM as a single function which is DemotePHI()

since version 2.1.

As introduced above, loops are also represented by

the control flow among basic blocks in LLVM IR.

Therefore, a comparison instruction such as icmp and

branch instructions such as br are also observed

together in a basic block such as conditional jump. It

may seem to be difficult to identify if a basic block is

related to loops or one-way conditional jump.

However, it is easily detectable with a loop analysis

pass which informs us which basic block is associated

with which loop.

In this study, the LLVM analysis and transformation

passes introduced above are used to construct the high

level looping representation in CTL. Using the LLVM

passes, it is possible to translate high-level CTL from

LLVM IR also with optimizations.

As an example, consider a code sample given in

Figure 11 that yields 34745 as the result. CTL from

LLVM-CHiMPS requires 2,110 cycles to execute in

simulator and that from Xilinx CHiMPS requires

2,711,409 cycles which is more than 1,000 times as

many. All of the inner loops in the source code are

highly optimized by LLVM, thus resulting in better

overall performance.

However, there is limit to optimization using LLVM

for CTL because CTL is initially intended to be

generated at compile time by CHiMPS so LLVM does

not have a chance to dynamically optimize the source

code at run time. The optimization shown in Figure 11

is constant expression evaluation also known as

constant folding, so evaluated constant expressions at

compile time are simply replaced. On the other hand,

Figure 12 shows a source code for matrix

multiplication in which no such expressions can be

easily optimized at compile time. Accordingly, CTL

generated from LLVM is not optimized as well. For the

multiplication of two 50-by-50 matrices, CTL from

LLVM uses 1,500,068 cycles in the simulator while

that from Xilinx CHiMPS requires only 1,494,968

cycles. Now that LLVM IR uses SSA based

representation, it needs some copy instructions in the

revised codes for CTL, while demoting the phi-nodes,

which made the number of simulation cycles a little bit

higher than that from Xilinx CHiMPS. Nonetheless it is

evident that CTL from LLVM has more chances to

have improved performance through optimizations at

compile time, so this approach is still promising.

4. Conclusions and future work

We have described our implementation of an LLVM

backend for generation of CTL. We also have shown a

few examples where global optimizations performed by

LLVM during compilation time greatly reduced the

number of cycles needed to execute the loop. The

major difficulty in this implementation was related to a

few instructions, such as for, with high level

characteristics in CTL. For such instructions, one-to-

one correspondence between CTL and LLVM IR could

not be found and therefore analysis and transformation

LLVM passes were used based on reducibility and

void matmul (long* a, long* b, long* c, long sz)
{

long i, j, k;

for (i = 0; i < sz; i++) {

long offset = i * sz;
long* row = a + offset;
long* out = c + offset;
for (j = 0; j < sz; j++) {

long* col = b + j;
out[j] = 0;
for (k = 0; k < sz; k++)

out[j] += row[k] * col[k*sz];
}

}
}

Figure 12. Source code for matrix multiplication

normal loop assumptions. LLVM is a fast evolving

open source project contributed by many developers.

For this reason, many optimization functions are

consistently being added and there appear more

chances to leverage optimizations and transformations

for LLVM-CHiMPS in the future.

The method discussed in this paper is based on

LLVM IR. Every instruction in CTL is translated from

the current LLVM IR grammar. This means that we

need to consider a new translation whenever the LLVM

IR grammar changes, which is an ongoing process.

When LLVM 2.0 was released, many changes were

introduced such as representation of data types. LLVM

also has backends for various target machines so these

backends generate optimized assembly codes from

LLVM IR. A de-compilation tool [7, 8] can be

implemented to emit CTL code after analyzing one of

these optimized machine assembly codes. This may be

advantageous because the generation of CTL can be

independent of the version update of LLVM IR.

In this paper, only simulation was carried out. In our

future work, we will consider application kernels on the

real hardware.

5. Acknowledgments

The authors would like to thank the Innovative

Systems Laboratory (ISL) at the National Center for

Supercomputing Applications (NCSA), the Xilinx

Research Labs and Prof. Vikram Adve at the

University of Illinois for their comments and support.

6. References

[1] P. Sundararajan, D. Bennett, and J. Mason,

Performance estimation for FPGA acceleration, in

Proc. Workshop on Tools and Compilers for Hardware

Acceleration (TCHA), 2006.

[2] D. Bennett, CHiMPS Target Language (CTL)

reference manual, Xilinx Research Labs, 2006.

[3] CHiMPS Tutorial, Xilinx, Inc., 2007.

[4] D. Bennett, An FPGA-oriented target language for

HLL compilation, Proc. Reconfigurable Systems

Summer Institute, 2006.

[5] The LLVM Compiler Infrastructure Project,

http://llvm.org/

[6] A. Aho, M. Lam, R. Sethi, and J. Ullman,

Compilers Principles, Techniques, and Tools, Addison

Wesley, 2006, ISBN 0321486811.

[7] C. Cifuentes, A Structuring Algorithm for

Decompilation, Proc. The XIX Conferencia

Latinoamericana de Informatica, 1993, pp. 267-276.

[8] C. Cifuentes, D. Simon, and A. Fraboulet,

Assembly to high-level language translation, Proc. The

International Conference on Software Maintenance,

IEEE-CS Press, 1998, pp. 228-237.

[9] S. Muchnick, Advanced Compiler Design and

Implementation, Morgan Kaufmann, 1997, ISBN

1558603204

[10] P. Havlak, Nesting of reducible and irreducible

loops, ACM Trans. Program. Lang. Syst., vol. 19, no.

4, 1997, pp. 557-567.

[11] J. Janssen, and H. Corporaal, Making graphs

reducible with controlled node splitting, ACM Trans.

Program. Lang. Syst., vol. 19, no. 6, 1997, pp. 1031-

1052.

[12] F. Mueller, and D. Whalley, Avoiding

unconditional jumps by code replication, SIGPLAN

Not., vol. 27, no. 7, 1992, pp. 322-330.

[13] P. Briggs, K. Cooper, T. Harvey, and L. Simpson,

Practical improvements to the construction and

destruction of static single assignment form, Softw.

Pract. Exper., vol. 28, no. 8, 1998, pp. 859-881.

[14] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and

F. Zadeck, Efficiently computing static single

assignment form and the control dependence graph,

ACM Trans. Program. Lang. Syst., vol. 13, no. 4,

1991, pp. 451-490.

[15] Xilinx, Inc. Release Notes of CHiMPS Tool Kit

Alpha 0.12, 2007.

[16] D. Bennett, Software Architect, Xilinx Research

Labs, Personal Communication

[17] J. Mason, Software Architect, Xilinx Research

Labs, Personal Communication

[18] T. Nishimura, and M. Matsumoto, A C-program

for MT19937, Keio University, Japan, 2002.

[19] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic,

and M. Gokhale, Trident: an FPGA compiler

framework for floating-point algorithms, International

Conference on Field Programmable Logic and

Applications, 2005, pp. 317-322

[20] Z. Guo, W. Najjar, and B. Buyukkurt, Efficient

hardware code generation for FPGAs, ACM

Transactions on Architecture and Code Optimization,

vol. 5, no. 1, 2008 pp. 6:1-26

[21] G. Genest, R. Chamberlain, and R. Bruce,

Programming an FPGA-based Super Computer Using a

C-to-VHDL Compiler: DIME-C, Second NASA/ESA

Conference on Adaptive Hardware and Systems, 2007,

pp. 280-286

[22] I. Pentinmakial, FPGA C Compiler,

http://fpgac.sourceforge.net/

[23] D. Gallowayet al., Transmogrifier C,

http://www.eecg.toronto.edu/EECG/RESEARCH/tmcc/

tmcc/

[24] M. Gokhale et al., Streams-C: Stream-Oriented C

Programming for FPGAs, http://www.streams-

c.lanl.gov/team.shtml

[25] Impulse C, Impulse Accelerated Technologies,

Inc., http://www.impulsec.com/

[26] Mitrion-C, Mitrionics, Inc.,

http://www.mitrionics.com/

[27] DIME-C, Nallatech Inc.,

http://www.nallatech.com/[28] MAP-C, SRC

Computers Inc., http://www.srccomp.com/

[29] SUIF Compiler System. http://suif.stanford.edu,

2004

[30] Machine-SUIF. http://www.eecs.harvard.edu/

hube/research/machsuif.html, 2004

