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ABSTRACT 
 
The Extensible Sensor Platform (ESP) combines a sensor 
bus with a Software Defined Radio (SDR). The first field 
programmable gate array (FPGA) implementation of the 
ESP supports the Phillips Semiconductors I2C sensor bus. 
The SDR provides the system with a programmable, 
flexible means of communicating sensor data over wireless 
data network available in a given application space. A wide 
band antenna and pluggable radio frequency (RF) front-end 
analog hardware with a common digitized intermediate 
frequency (IF) allows system deployment in a wide range of 
RF spectrum. The main advantage of the ESP is that it gives 
researchers the ability to programmatically adapt their 
wireless sensor data communication network fabric to 
different portals available within a given application space: 
a cellular tower, packet radio, 802.11, Bluetooth, etc. 
Additionally, an FPGA implementation allows researchers 
to deploy an ESP with multiple data channels and separate 
control and data channels. This paper describes the ESP 
architecture as well as the first FPGA based implementation 
of the ESP. 
 
 

1. INTRODUCTION 
 
The Extensible Sensor Platform (ESP) project merges 
sensor technology and Software Defined Radio (SDR) 
technology.  This platform may be applied to a wide range 
of applications and environments in which the use of a 
conventional sensor system with a fixed radio (such as 
Berkeley mote [1] [2] derivations) is limited. Additionally, 
the ESP is dedicated to supporting standard sensor 
interfaces, such as the Phillips Semiconductors I2C bus [3] 
and the newly emerging IEEE 1451.4 smart sensor interface 
[4] [5].  
 Environment monitoring, be it animal habitat 
monitoring, weather observation, or enemy territory 
surveillance, are examples of where the ESP has great 
potential.  At the current state of the art, each environment 
monitoring system is designed for a specific, fixed 
environment application in mind.  When additional sensory 
or communication capabilities are required, the entire 

system is re-engineered to include the needed sensor, 
conditioning electronics, or the radio-related hardware.  The 
ESP, on the other hand, requires no hardware changes, other 
than attaching the actual sensor device via the standard 
sensor interface.  Instead of hardware changes, the ESP 
requires loading new software to support the new sensor or 
to change the characteristics of the SDR for a new data 
communication channel.  Once deployed, an ESP-based 
environment monitoring system can be upgraded over the 
radio waves to include a new communication protocol or a 
new data encryption algorithm.  It can automatically 
discover available nearby communication infrastructure, 
such as a cellular telephone tower or other ESP devices in 
the neighborhood. In the latter example, the ESP will have 
the ability to form a self-organizing ad-hoc network and 
pass the sensor data on to an ESP in the network that does 
have access to existing network communication 
infrastructure. 
 The SDR portion of the ESP is what gives the platform 
the ability to mesh with any available wireless data 
communication fabric. It allows the platform to utilize 
existing data communication infrastructure in a given 
application space to transport sensor data back to the data 
collection servers. 
 A standard sensor bus is what gives researchers the 
capability of changing or adding sensors without 
redesigning hardware. This is useful in application spaces in 
which the user requires an iterative approach to determining 
the correct mix and types of sensors for a given 
environment. 
 This paper will describe the architecture of the ESP as 
well as the first FPGA implementation of a simple sensor 
data transmitter and receiver. This first implementation 
serves as a proof of concept prototype - a step towards a 
truly flexible, heterogeneous, multi-modal wireless sensor 
platform. 
 
 

2. ARCHITECTURE 
 
Any sensor network may be viewed abstractly as a data 
generation sensor, a network connection to transport that 
data, and the data collection server endpoint (Figure 1). The 



ESP builds upon this abstraction (Figure 2) by providing a 
standard sensor bus as a common sensor interface, allowing 
the use of many different types of commercial off the shelf 
sensors. The ESP network connection to the data collection 
servers consists of two parts: an existing data network 
infrastructure and the SDR portion of the ESP. The SDR 
provides programmable connectivity into the application 
space’s existing data network infrastructure. 
 

 The block diagram level view of the ESP architecture is 
detailed in Figure 3 showing the analog RF front-end 
hardware, the data converters, the sensor bus, and the FPGA 
based SDR and control sections of the ESP. 
 We chose the Phillips Semiconductors I2C [3] standard 

for interfacing with sensors.  I2C is a ubiquitous, simple 

two-wire (clock and data) bi-directional bus, works well 
with hybrid 5 volt and 3.3 volt systems [6], and is well-
supported by many different sensor manufacturers. Another 
factor that led us to choose the I2C bus over other sensor 
interfaces is that the radio front-end tuning and gain control 
used in our design support an I2C interface.  We chose to 
operate the I2C bus at the slower 100 KHz rate and with the 
older 7 bit addressing since these parameters are supported 
by more sensors than the new 400 KHz rate and 10 bit 
addressing. 
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Figure 1 – Abstract Sensor Network

 Ideally, the SDR portion of the ESP would directly 
digitize some segment of the radio frequency (RF) spectrum 
at the antenna. This ideal system cannot be easily 
implemented since modern analog to digital converters 
(ADC) and digital to analog converters (DAC) are fast 
enough to directly convert only a very small portion of the 
RF spectrum [7]. Instead, an analog conversion stage (RF 
Front-end) is inserted between the antenna and the data 
converters. This conversion stage uses analog multiplication 
[8] to mix the RF frequency down to a lower intermediate 
frequency (IF) or to up convert the IF to the higher RF 
carrier frequency [7] [9] [10].  
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Figure 2 – ESP Sensor Network

 The analog RF front-end hardware is limited to specific 
regions of the RF spectrum by design. This inflexibility is 
addressed in the ESP by allowing any analog RF front-end 
hardware to work with the ESP as long as it can function 
with a 10.7 MHz IF. 
 ESP system control is provided by a microprocessor 
subsystem in the FPGA. A minimal microprocessor 
subsystem for the ESP includes a microprocessor, program 
storage memory, random access memory, timers tied to the 
system clock, bit-wise binary input-output for control, and 
an I2C master bus controller. 
 
 

3. IMPLEMENTATION 
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Figure 3 – ESP Block Diagram

 
The goal of the first ESP implementation was to prototype 
two 900 MHz ESP systems, one a transmitter with a 
temperature sensor, and the other with a receiver and LED. 
The LED would be turned on or off based on the 
temperature data from the transmitter and a set threshold 
value. 
 The prototype design target was the Nallatech BenONE 
and BenADDA boards. The BenADDA provides two 
ADCs, two DACs, and a Xilinx Virtex 2V3000-4 FPGA. 
The BenONE provides motherboard support for the 
BenADDA, including clocks, power, and a USB download 
interface. 
 We used the Matlab/Simulink software tools for high-
level digital signal processing (DSP) design for the SDR 
part of the ESP. The Xilinx System Generator for DSP tool 
converted the Matlab/Simulink design into Xilinx design 
specific files. The Xilinx XPS tool generated Xilinx design 



specific files from our soft core microprocessor system 
design. We also wrote VHDL code for certain aspects of the 
design. The Xilinx ISE Foundation tool set combined 
rendered all of the Xilinx design specific files and VHDL 
into a single bit file used to program the FPGA. 

 In order to allow an ASK receiver to synchronize with 
an ASK transmitter, a defined synchronization bit pattern 
(“sync”) is sent out by the transmitter immediately before 
the encoded data bits. In this design, the carrier-on and 
carrier-off sync pattern is shown in Figure 5. 

 The 900 MHz RF front-end transceiver was provided 
by the National Center for Advanced Secure System 
Research (NCASSR) SDR project [15]. Tuning and 
automatic gain control (AGC) is controlled by the ESP’s 
microprocessor systems over the I2C bus shared with the 
sensor. 

 
 Note in Figure 5 there are 13 sub-bit-times of the 
carrier-on state or the carrier-off state in this pattern. Note 
also that the first sub-bit of the pattern is a carrier-on, which 
notifies an ASK receiver to start keeping track of what it is 
receiving. The actual digital data message payload starts 
immediately after the last sync sub-bit. This bit encoding 
and synchronization pattern is derived wholly from Holtek 
Semiconductor’s HT-680 Encoder [17]. 

 The transmitter prototype reads a temperature sensor 
and transmits the sensor data via amplitude shift keying 
(ASK) modulation. ASK digital data transmission [16], in 
its simplest form, uses a transmitter carrier-on condition of 
duration  to represent a digital logic ‘1’ and a transmitter 
carrier-off condition of duration t  to represent a digital 
logic ‘0’. The double sideband (DSB) form of ASK is 
represented by  

t
 Figure 6 shows a block diagram of the prototype’s data 
transmitter. The two timers in the design are used for time 
references: one is used as an interval timer for checking the 
temperature sensor, and the other is used as a 375 micro-
second sub-bit timing reference when the design is 

transmitting data. The processor’s program controls the 
carrier-on and carrier-off conditions via a single bit enable 
control line to the Direct Digital Synthesizer (DDS). This 
DDS is provided by Xilinx as a single black box functional 
unit for the Matlab/Simulink tools. When enabled by the 
microprocessor, the DDS generates a digital data stream of 
14 bit fixed point number representing a 10.7 MHz 
sinusoid. The output of the DDS is sampled at 25 MHz by 
the BenADDA’s DAC and passed through a passive analog 
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Figure 6 – ESP Prototype Sensor Data Transmitter

 
 
where  is the modulating signal (-1 or 1), )(tm A  is the 
amplitude, and cω  is the carrier frequency in radians. 
 In order to improve the ASK receiver’s ability to 
discriminate between carrier-off representing a logic ‘0’ and 
carrier-off representing a transmitter turned off, the digital 
bits are encoded. In this design, a “sub-bit-time” is 375 
micro-seconds. Six sub-bit-times make one bit-time. Given 
these timings, the digital data bits are encoded via carrier-on 
and carrier-off states as shown in Figure 4. 
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Figure 4 – Digital Bit Encoding
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regeneration filter (not shown) to the 900 MHz transceiver 
board and out the antenna. The I2C bus is under the control 
of the design’s microprocessor and is used to tune the 
transmitter frequency, set the transmitter AGC, and read the 
temperature sensor.  
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 Figure 8 shows a block diagram of the ASK data 
receiver section of the prototype sensor data receiver. The 
filtered 10.7 MHz IF from the analog 900 MHz transceiver 
board is digitized at a 25 MHz sample rate. The IF is down-
converted and the sample rate is reduced by a factor of 50. 
This ASK receiver uses non-coherent detection by applying 
an absolute value type of envelope detector to the fixed 
point data stream. The output of the detector is presented to 
a low pass filter, which detects the presence or absence of 
signal energy. With 00 =s  and tAs cωcos1 = , the 

ng time output of the filter at the sampli T  is 

 Figure 7 shows a block diagram of the prototype’s data 
receiver. The timer in the design is used as a sample time 
reference on the input data stream from the ASK data 
receiver. The analog 900 MHz transceiver passes the 10.7 

MHz IF through a passive analog input filter (not shown). 
This analog IF is digitized by the BenADDA’s ADC using a 
sample rate of 25 MHz. The digitized IF is passed to the 

ASK data receiver, described below. The I2C bus is under 
the control of the design’s microprocessor and is used to 
tune the receiver frequency and set the receiver’s AGC.  
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Figure 7 – ESP Prototype Sensor Data Receiver
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where 

0)(0 =ty and 

A  is the amplitude, and cω  is the carrier frequency 

system clock timing 

4. FUTURE WORK 

Much needs to be done before pe can be 

P easier to program and 

in radians [16]. The output of the low pass filter is sampled, 
and a detected energy level below a set threshold is a logic 
‘0’ and a detect energy level below a set threshold is a logic 
‘1’. The recovered data bit stream is fed to the 
microprocessor in the receiver design. 
 This design easily met the 25 MHz 
requirements using the slowest (-4) speed version of the 
Xilinx 2V3000. In terms of space utilization, the transmitter 
and receiver implementations each occupied 16% of the 
2V3000 FPGA. 
 
 

 
 the working prototy

converted into an integrated single-board design suitable for 
mass-production.  For a first step in this direction, we 
currently plan to move the ESP off its current prototype 
development hardware host onto a tightly integrated, 
minimal chip count board design. 
 We also plan to make the ES
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Figure 8 – ASK Data Receiver Block Diagram
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use. As part of this effort, we plan to implement various 
common radio functional blocks in an FPGA that may be 
parameterized and connected together via high level 
commands. A set of interpreted commands will allow a 
programmer to select radio functional blocks (objects) 
already present in an FPGA. The commands will, in effect, 
allow a programmer to specify a wireless communication 
system in much the same manner as the GNU Software 
Radio distribution [11]. The GNU Software Radio project 
instantiates functional block-objects for a given radio design 
and link the objects together. An alternative approach may 
be to implement a subset of the Software Control 
Architecture (SCA) [12] developed by the U.S. Department 
of Defence Joint Tactical Radio System (JTRS) project [13]. 
 We are currently investigating the proposed IEEE 
1451.4 standard [4] [5] for use in the ESP as an additional 
sensor interface. The IEEE1451.4 standard will provide a 
plug-and-play approach to adding sensors to the ESP which 



will make the ESP easier to use. We plan to provide both 
the I2C and the IEEE-1451.4 interfaces. 
 Longer term, we are planning to adopt much of the 
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