

THE EXTENSIBLE SENSOR PLATFORM

David Pointer; Volodymyr Kindratenko; Paul Zawada; Meenal Pant

(National Center for Supercomputing Applications, University of Illinois at Urbana-
Champaign, Champaign, IL; email: pointer@ncsa.uiuc.edu)

ABSTRACT

The Extensible Sensor Platform (ESP) combines a sensor
bus with a Software Defined Radio (SDR). The first field
programmable gate array (FPGA) implementation of the
ESP supports the Phillips Semiconductors I2C sensor bus.
The SDR provides the system with a programmable,
flexible means of communicating sensor data over wireless
data network available in a given application space. A wide
band antenna and pluggable radio frequency (RF) front-end
analog hardware with a common digitized intermediate
frequency (IF) allows system deployment in a wide range of
RF spectrum. The main advantage of the ESP is that it gives
researchers the ability to programmatically adapt their
wireless sensor data communication network fabric to
different portals available within a given application space:
a cellular tower, packet radio, 802.11, Bluetooth, etc.
Additionally, an FPGA implementation allows researchers
to deploy an ESP with multiple data channels and separate
control and data channels. This paper describes the ESP
architecture as well as the first FPGA based implementation
of the ESP.

1. INTRODUCTION

The Extensible Sensor Platform (ESP) project merges
sensor technology and Software Defined Radio (SDR)
technology. This platform may be applied to a wide range
of applications and environments in which the use of a
conventional sensor system with a fixed radio (such as
Berkeley mote [1] [2] derivations) is limited. Additionally,
the ESP is dedicated to supporting standard sensor
interfaces, such as the Phillips Semiconductors I2C bus [3]
and the newly emerging IEEE 1451.4 smart sensor interface
[4] [5].
 Environment monitoring, be it animal habitat
monitoring, weather observation, or enemy territory
surveillance, are examples of where the ESP has great
potential. At the current state of the art, each environment
monitoring system is designed for a specific, fixed
environment application in mind. When additional sensory
or communication capabilities are required, the entire

system is re-engineered to include the needed sensor,
conditioning electronics, or the radio-related hardware. The
ESP, on the other hand, requires no hardware changes, other
than attaching the actual sensor device via the standard
sensor interface. Instead of hardware changes, the ESP
requires loading new software to support the new sensor or
to change the characteristics of the SDR for a new data
communication channel. Once deployed, an ESP-based
environment monitoring system can be upgraded over the
radio waves to include a new communication protocol or a
new data encryption algorithm. It can automatically
discover available nearby communication infrastructure,
such as a cellular telephone tower or other ESP devices in
the neighborhood. In the latter example, the ESP will have
the ability to form a self-organizing ad-hoc network and
pass the sensor data on to an ESP in the network that does
have access to existing network communication
infrastructure.
 The SDR portion of the ESP is what gives the platform
the ability to mesh with any available wireless data
communication fabric. It allows the platform to utilize
existing data communication infrastructure in a given
application space to transport sensor data back to the data
collection servers.
 A standard sensor bus is what gives researchers the
capability of changing or adding sensors without
redesigning hardware. This is useful in application spaces in
which the user requires an iterative approach to determining
the correct mix and types of sensors for a given
environment.
 This paper will describe the architecture of the ESP as
well as the first FPGA implementation of a simple sensor
data transmitter and receiver. This first implementation
serves as a proof of concept prototype - a step towards a
truly flexible, heterogeneous, multi-modal wireless sensor
platform.

2. ARCHITECTURE

Any sensor network may be viewed abstractly as a data
generation sensor, a network connection to transport that
data, and the data collection server endpoint (Figure 1). The

ESP builds upon this abstraction (Figure 2) by providing a
standard sensor bus as a common sensor interface, allowing
the use of many different types of commercial off the shelf
sensors. The ESP network connection to the data collection
servers consists of two parts: an existing data network
infrastructure and the SDR portion of the ESP. The SDR
provides programmable connectivity into the application
space’s existing data network infrastructure.

 The block diagram level view of the ESP architecture is
detailed in Figure 3 showing the analog RF front-end
hardware, the data converters, the sensor bus, and the FPGA
based SDR and control sections of the ESP.
 We chose the Phillips Semiconductors I2C [3] standard

for interfacing with sensors. I2C is a ubiquitous, simple

two-wire (clock and data) bi-directional bus, works well
with hybrid 5 volt and 3.3 volt systems [6], and is well-
supported by many different sensor manufacturers. Another
factor that led us to choose the I2C bus over other sensor
interfaces is that the radio front-end tuning and gain control
used in our design support an I2C interface. We chose to
operate the I2C bus at the slower 100 KHz rate and with the
older 7 bit addressing since these parameters are supported
by more sensors than the new 400 KHz rate and 10 bit
addressing.

Sensor Network
Connection

Data
Collection

Server

Figure 1 – Abstract Sensor Network

 Ideally, the SDR portion of the ESP would directly
digitize some segment of the radio frequency (RF) spectrum
at the antenna. This ideal system cannot be easily
implemented since modern analog to digital converters
(ADC) and digital to analog converters (DAC) are fast
enough to directly convert only a very small portion of the
RF spectrum [7]. Instead, an analog conversion stage (RF
Front-end) is inserted between the antenna and the data
converters. This conversion stage uses analog multiplication
[8] to mix the RF frequency down to a lower intermediate
frequency (IF) or to up convert the IF to the higher RF
carrier frequency [7] [9] [10].

Vibration
Sensor

Temperature
Sensor

Air Pressure
Sensor

CO2 Sensor C
om

m
on

 S
en

s o
r I

nt
er

fa
ce

 (I
2 C

)

W
i re

le
ss

 N
et

w
or

k
C

on
ne

ct
iv

ity
 (S

of
tw

ar
e

D
ef

in
ed

 R
ad

i o
)

Ex
is

tin
g

W
ire

le
ss

 D
at

a
N

et
w

or
k

I n
fr

as
tru

ct
ur

e

D
at

a
C

ol
le

ct
io

n
an

d
D

at
a

M
in

in
g

Se
rv

er
s

Figure 2 – ESP Sensor Network

 The analog RF front-end hardware is limited to specific
regions of the RF spectrum by design. This inflexibility is
addressed in the ESP by allowing any analog RF front-end
hardware to work with the ESP as long as it can function
with a 10.7 MHz IF.
 ESP system control is provided by a microprocessor
subsystem in the FPGA. A minimal microprocessor
subsystem for the ESP includes a microprocessor, program
storage memory, random access memory, timers tied to the
system clock, bit-wise binary input-output for control, and
an I2C master bus controller.

3. IMPLEMENTATION

FPGA

R
F

Fr
on

t-e
nd ADC

DAC

M
ic

ro
pr

oc
es

so
r S

ub
sy

st
em

SDR
Transmitter

SDR
Receiver

Sensors

IF

I2C Sensor Bus

IF

Figure 3 – ESP Block Diagram

The goal of the first ESP implementation was to prototype
two 900 MHz ESP systems, one a transmitter with a
temperature sensor, and the other with a receiver and LED.
The LED would be turned on or off based on the
temperature data from the transmitter and a set threshold
value.
 The prototype design target was the Nallatech BenONE
and BenADDA boards. The BenADDA provides two
ADCs, two DACs, and a Xilinx Virtex 2V3000-4 FPGA.
The BenONE provides motherboard support for the
BenADDA, including clocks, power, and a USB download
interface.
 We used the Matlab/Simulink software tools for high-
level digital signal processing (DSP) design for the SDR
part of the ESP. The Xilinx System Generator for DSP tool
converted the Matlab/Simulink design into Xilinx design
specific files. The Xilinx XPS tool generated Xilinx design

specific files from our soft core microprocessor system
design. We also wrote VHDL code for certain aspects of the
design. The Xilinx ISE Foundation tool set combined
rendered all of the Xilinx design specific files and VHDL
into a single bit file used to program the FPGA.

 In order to allow an ASK receiver to synchronize with
an ASK transmitter, a defined synchronization bit pattern
(“sync”) is sent out by the transmitter immediately before
the encoded data bits. In this design, the carrier-on and
carrier-off sync pattern is shown in Figure 5.

 The 900 MHz RF front-end transceiver was provided
by the National Center for Advanced Secure System
Research (NCASSR) SDR project [15]. Tuning and
automatic gain control (AGC) is controlled by the ESP’s
microprocessor systems over the I2C bus shared with the
sensor.

 Note in Figure 5 there are 13 sub-bit-times of the
carrier-on state or the carrier-off state in this pattern. Note
also that the first sub-bit of the pattern is a carrier-on, which
notifies an ASK receiver to start keeping track of what it is
receiving. The actual digital data message payload starts
immediately after the last sync sub-bit. This bit encoding
and synchronization pattern is derived wholly from Holtek
Semiconductor’s HT-680 Encoder [17].

 The transmitter prototype reads a temperature sensor
and transmits the sensor data via amplitude shift keying
(ASK) modulation. ASK digital data transmission [16], in
its simplest form, uses a transmitter carrier-on condition of
duration to represent a digital logic ‘1’ and a transmitter
carrier-off condition of duration t to represent a digital
logic ‘0’. The double sideband (DSB) form of ASK is
represented by

t
 Figure 6 shows a block diagram of the prototype’s data
transmitter. The two timers in the design are used for time
references: one is used as an interval timer for checking the
temperature sensor, and the other is used as a 375 micro-
second sub-bit timing reference when the design is

transmitting data. The processor’s program controls the
carrier-on and carrier-off conditions via a single bit enable
control line to the Direct Digital Synthesizer (DDS). This
DDS is provided by Xilinx as a single black box functional
unit for the Matlab/Simulink tools. When enabled by the
microprocessor, the DDS generates a digital data stream of
14 bit fixed point number representing a 10.7 MHz
sinusoid. The output of the DDS is sampled at 25 MHz by
the BenADDA’s DAC and passed through a passive analog

ttmAts cωcos)](1[

2
)(+=

BenADDA

Xilinx Virtrex 2V3000 FPGA

Direct
Digital

Synthesizer
(DDS)

DAC

900 MHz Analog
RF Transceiver

32-bit
Microblaze
Processor

32K RAM
Instruction &

Data

I2C Master
32-bit Timers

(2X)

I2
C

 B
us

10.7 MHz IF

Dallas DS1721
I2C Temperature

Sensor

Figure 6 – ESP Prototype Sensor Data Transmitter

where is the modulating signal (-1 or 1),)(tm A is the
amplitude, and cω is the carrier frequency in radians.
 In order to improve the ASK receiver’s ability to
discriminate between carrier-off representing a logic ‘0’ and
carrier-off representing a transmitter turned off, the digital
bits are encoded. In this design, a “sub-bit-time” is 375
micro-seconds. Six sub-bit-times make one bit-time. Given
these timings, the digital data bits are encoded via carrier-on
and carrier-off states as shown in Figure 4.

off

375uS

Logic
‘0’

sub-bit-time

2.25mS
bit-time

Figure 4 – Digital Bit Encoding

off

on on

off on off off on

off on on

Logic
‘1’

off

375uS

4.875mS

first sync sub-bit last sync sub-bit

on onon offoff on off onon offoff on

Figure 5 – Carrier On / Carrier Off Sync Pattern

regeneration filter (not shown) to the 900 MHz transceiver
board and out the antenna. The I2C bus is under the control
of the design’s microprocessor and is used to tune the
transmitter frequency, set the transmitter AGC, and read the
temperature sensor.

2
)()(

2

0

2
11

TAdttsty
T

== ∫

 Figure 8 shows a block diagram of the ASK data
receiver section of the prototype sensor data receiver. The
filtered 10.7 MHz IF from the analog 900 MHz transceiver
board is digitized at a 25 MHz sample rate. The IF is down-
converted and the sample rate is reduced by a factor of 50.
This ASK receiver uses non-coherent detection by applying
an absolute value type of envelope detector to the fixed
point data stream. The output of the detector is presented to
a low pass filter, which detects the presence or absence of
signal energy. With 00 =s and tAs cωcos1 = , the

ng time output of the filter at the sampli T is

 Figure 7 shows a block diagram of the prototype’s data
receiver. The timer in the design is used as a sample time
reference on the input data stream from the ASK data
receiver. The analog 900 MHz transceiver passes the 10.7

MHz IF through a passive analog input filter (not shown).
This analog IF is digitized by the BenADDA’s ADC using a
sample rate of 25 MHz. The digitized IF is passed to the

ASK data receiver, described below. The I2C bus is under
the control of the design’s microprocessor and is used to
tune the receiver frequency and set the receiver’s AGC.

BenADDA

Xilinx Virtrex2V3000 FPGA

ASK
Data

Receiver

32K RAM
Instruction &

Data

32-bit Timers
(1X)

32-bit
Microblaze
Processor

I2C Master

DAC LED

900 MHz Analog
RF Transceiver

10.7 MHz IF

I2
C

 B
us

Figure 7 – ESP Prototype Sensor Data Receiver

,

where

0)(0 =ty and

A is the amplitude, and cω is the carrier frequency

system clock timing

4. FUTURE WORK

Much needs to be done before pe can be

P easier to program and

in radians [16]. The output of the low pass filter is sampled,
and a detected energy level below a set threshold is a logic
‘0’ and a detect energy level below a set threshold is a logic
‘1’. The recovered data bit stream is fed to the
microprocessor in the receiver design.
 This design easily met the 25 MHz
requirements using the slowest (-4) speed version of the
Xilinx 2V3000. In terms of space utilization, the transmitter
and receiver implementations each occupied 16% of the
2V3000 FPGA.

 the working prototy

converted into an integrated single-board design suitable for
mass-production. For a first step in this direction, we
currently plan to move the ESP off its current prototype
development hardware host onto a tightly integrated,
minimal chip count board design.
 We also plan to make the ES

Fr
eq

ue
nc

y
D

ow
nc

on
ve

rte
r

Figure 8 – ASK Data Receiver Block Diagram

A
D

C

50

En
ve

lo
pe

 D
et

ec
to

r

B
in

ar
y

D
ec

is
io

n

use. As part of this effort, we plan to implement various
common radio functional blocks in an FPGA that may be
parameterized and connected together via high level
commands. A set of interpreted commands will allow a
programmer to select radio functional blocks (objects)
already present in an FPGA. The commands will, in effect,
allow a programmer to specify a wireless communication
system in much the same manner as the GNU Software
Radio distribution [11]. The GNU Software Radio project
instantiates functional block-objects for a given radio design
and link the objects together. An alternative approach may
be to implement a subset of the Software Control
Architecture (SCA) [12] developed by the U.S. Department
of Defence Joint Tactical Radio System (JTRS) project [13].
 We are currently investigating the proposed IEEE
1451.4 standard [4] [5] for use in the ESP as an additional
sensor interface. The IEEE1451.4 standard will provide a
plug-and-play approach to adding sensors to the ESP which

will make the ESP easier to use. We plan to provide both
the I2C and the IEEE-1451.4 interfaces.
 Longer term, we are planning to adopt much of the

5. ACKNOWLEDGEMENT

his work was performed at the National Center for

6. REFERENCES

] J. Hill and D. Culler, “A wireless embedded sensor

[2] o, S. Hollar, and D.C.K.

[3] nductors, The I2C Bus Specification,

[4] ducer Interface for Sensors

[5] art Transducer Interface for Sensors and

public domain work on mobile ad-hoc sensor networking
released by the Naval Research Laboratory’s PROTEAN
group [14].

T
Advanced Secure System Research (NCASSR) and funded
by the Office of Naval Research (ONR) grant N00014-3-1-
0765.

[1
architecture for system-level optimization”, Technical
report, Computer Science Department, University of
California at Berkeley, 2002.
J. Hill, R. Szewczyk, A. Wo
Pister. “System architecture directions for networked
sensors”, Proceedings of ACM SIGMOD, San Diego,
CA, June 2000.
Phillips Semico
Version 2.1, January 2000.
Standard for a Smart Trans
and Actuators - Transducer to Microprocessor
Communication Protocols and Transducer Electronic
Data Sheet (TEDS) Formats, IEEE Standard 1451.2-
1997.
A Sm
Actuators – Mixed-mode Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats,
Draft IEEE Standard P1451.4.

[6] Philips Semiconductors, “Bi-directional level shifter for
I2C bus and other systems”, application note AN98055,
1997.

[7] Jeffrey H. Reed, Software Radio, Prentice Hall PTR:
Upper Saddle River, NJ, 2002, ch. 1, pp. 169-171, pp.
377-379.

[8] The ARRL Handbook for Radio Communications, 80th
ed., Amateur Radio Relay League, Newington, CT,
2003, pp. 15.1-15.4, pp. 16.37–16.40.

[9] Andrew Bateman and Iain Paterson-Stephens, The DSP
Handbook: Algorithms, Applications, and Design
Techniques, Pearson Education Limited: Essex,
England, 2002, cha. 5, cha. 6, p. 620.

[10] Wes Hayward, Rick Campbell, Bob Larkin,
Experimental Methods in RF Design, Amateur Radio
Relay League: Newington, CT, 2003, p. 10.7.

[11] GNU Software Radio Project web site,
http://www.gnu.org/software/gnuradio/

[12] “Software Communications Architecture
Specification”, Technical report, U.S. Army, 1998.

[13] Joint Tactical Radio System web site,
http://jtrs.army.mil/

[14] U.S. Naval Research Laboratory PROTEAN Group
web site, http://protean.itd.nrl.navy.mil/

[15] A. Betts, M. Hall, V. Kindratenko, M. Pant, D. Pointer,
V. Welch, P. Zawada, “The GNU Software Radio
Transceiver Platform”, Proceedings of the 2004
Software Defined Radio Technical Conference,
November 2004.

[16] David R. Smith, Digital Transmission Systems, 2nd ed.,
Van Nostrand Reinhold: New York, 1993, pp. 360-363.

[17] Holtek Semiconductor, Inc., HT600/680/6207 318
Series of Encoders Data Sheet, Revision 1.10, January
24, 2003.

http://www.gnu.org/software/gnuradio/
http://jtrs.army.mil/
http://protean.itd.nrl.navy.mil/

