
The Visible Radio: Process Visualization of a Software-Defined Radio

Matthew Hall, Alex Betts, Donna Cox, David Pointer, Volodymyr Kindratenko

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

ABSTRACT
In this case study, a data-oriented approach is used to visualize

a complex digital signal processing pipeline. The pipeline
implements a Frequency Modulated (FM) Software-Defined
Radio (SDR). SDR is an emerging technology where portions of
the radio hardware, such as filtering and modulation, are replaced
by software components. We discuss how an SDR
implementation is instrumented to illustrate the processes
involved in FM transmission and reception. By using audio-
encoded images, we illustrate the processes involved in radio,
such as how filters are used to reduce noise, the nature of a carrier
wave, and how frequency modulation acts on a signal. The
visualization approach used in this work is very effective in
demonstrating advanced topics in digital signal processing and is
a useful tool for experimenting with the software radio design.

CR Categories and Subject Descriptors: I.3.8 [Computer

Graphics]: Applications; I.6.6 [Simulation and Modeling]:
Simulation Output Analysis; I.6.8 [Simulation and Modeling]:
Types of Simulation – visual; J.2.6 [Physical Sciences and
Engineering]: Mathematics and Statistics.

Additional Keywords: visualization metaphor, visualization of

mathematics, radio, SDR.

1 INTRODUCTION
Radio engineers are experts at using visual tools to test and

debug new radio designs. Radio frequency (RF) test equipment,
such as oscilloscopes and spectrum analyzers, are used to simply
and effectively display the results of electronic signal
measurements. Such displays can be used in both a qualitative
manner to provide an overall picture of the health of a signal, and
in a quantitative one to provide detailed measurements of signal
characteristics. These tools are indispensable for designing and
debugging radios.

As modern radio designs evolve, however, many of the analog
electronics of conventional radios are being replaced by digital
hardware. In the field of digital signal processing (DSP),
numerical techniques are used to perform important radio
operations such as modulation and demodulation. Increasingly,
the hardware used to perform the DSP is reprogrammable, so that
the radio is essentially implemented in software. Such a radio is
called a software-defined radio (SDR).

Unfortunately, RF test equipment cannot be used to probe and
debug SDRs, as it cannot measure what is happening inside the
software. For radio engineers, however, the utility of signal
measurement tools cannot be overstated; tools capable of visually
displaying measurements of SDR signals are therefore critically
important to the design and testing of SDR’s. This is where
software visualization comes in play. Software visualization

techniques allow us to continue to use visual information to probe
and debug various processing stages in the digital processing
pipeline. In addition to providing the necessary tools for radio
development, new types of displays can be built that may be used
to aid in the development of specific radio applications, to
investigate new DSP algorithms, or to provide educational
visualizations of DSP techniques.

The application presented in this paper provides an operational
visualization of a complete FM SDR transceiver for the purposes
of education. We target the visualization to both a general
audience, and students beginning their study of digital signal
processing. We would like to employ the engineer’s technique of
looking at spectral information as it passes between the stages of a
DSP pipeline, however the engineer’s tool, the spectrum analyzer,
requires expertise to interpret correctly. Also, while most people
have some knowledge of musical notation, the concept of
mapping audio information into the visual domain does not
immediately occur to them. In order to provide the audience with
the necessary skills to interpret spectral data in the pipeline, we
employ what we believe to be a novel didactic technique; we
encode a recognizable image into the spectral information of an
audio signal; when we later examine the output of a digital signal
processing block, the effect of the block on the signal becomes
apparent in how it transforms the image. This technique also
reduces the quantitative information provided by a spectrum
analyzer without eliminating it. It is still possible in our
visualization to perform some useful quantitative measurements,
such as counting sidebands, or finding frequency cutoffs.
Therefore our visualization is not simply an intuitive introduction
to SDR and DSP; it can be used to introduce students to empirical
methods as well.

The paper is organized as follows. We first present an
overview of software defined radio concept, and the hardware and
software that we use to implement our design. We then describe
how we instrument the software for visualization purposes. In
order to associate the correspondence between audio signals and
images, we invoke the metaphor of a player piano. We then look
in detail at how each stage of our software radio acts upon a
simple signal. We also take a closer look at FM modulation by
varying an operational parameter and examining its effect upon a
signal. We conclude by examining an interactive 3D version of
our visualization, and discussing future work.

2 SDR OVERVIEW

2.1 SDR Concepts
In a conventional radio, all the signal processing functions, such

as frequency translation, filtering, demodulation, etc., are
implemented in analog hardware and therefore cannot be changed
without altering the hardware design. While this approach has
proven to be practical for a very large range of applications, there
are cases in which the ability to alter radio functionality at run-
time is highly desirable. Interoperability with the existing legacy
systems, ability to operate with region-specific communication
standards, and readiness for future communication protocols are
just a few examples when a reconfigurable system is desirable.

{mahall|betts|cox|pointer|kindr}@ncsa.uiuc.edu

159

IEEE Visualization 2005
October 23-28, Minneapolis, MN, USA
0-7803-9462-3/05/$20.00 ©2005 IEEE.

Recent development of digital signal processing techniques and
increases in available computing power have made it possible to
replace rigid analog signal processing hardware with
programmable digital signal processing systems that are fast
enough to satisfy the needs of high-rate signal processing in
modern communication systems. These developments have led to
programmable and reconfigurable radios whose functionality can
be changed in real-time by simply altering the software deployed
on the system. SDR is characterized as “a radio that is
substantially defined in software and whose physical layer
behavior can be significantly altered through changes to its
software” [1].

In an ideal SDR receiver, the Analog to Digital Converter
(ADC) directly converts a portion of the radio frequency spectrum
to digital data, which is then processed (filtered, converted to
baseband, and demodulated) by a digital signal processing system
and passed as the system output. Similarly, the ideal SDR
transmitter consists of a DSP system that implements various
signal processing functions (most notably, modulation) and a
Digital to Analog Converter (DAC) that converts the DSP output
to analog RF signal which is then radiated by the antenna. In
reality, this approach is feasible only at very low frequency (VLF)
carrier frequencies due to the performance limitations and/or
prohibitive cost of high rate ADC/DAC and DSP hardware.
Consequently, a more practical implementation of an SDR
transceiver includes a tunable analog RF front-end and analog
down/up-conversion to/from an intermediate frequency (IF)
acceptable by the ADC/DAC hardware. Frequently, multiple
stages of conversion and amplification occur (Figure 1) and
additional filtering is needed between these stages. In such a
design, the RF front-end is used to tune the radio transceiver to a
particular RF band and to amplify the RF signal whereas the
actual RF signal processing (modulation and demodulation in
particular) takes place in the digital domain.

Tu
na

bl
e

R
F

fro
nt

-e
nd ADC

DAC

RF

D
ow

n/
U

p
C

on
ve

rte
r 1

D
ow

n/
U

p
C

on
ve

rte
r 2

RF

IF1

IF1

IF2
digital
IF2

digital
IF2

data
out

data
in

an
te

nn
a

D
S

P

IF2Tu
na

bl
e

R
F

fro
nt

-e
nd ADC

DAC

RF

D
ow

n/
U

p
C

on
ve

rte
r 1

D
ow

n/
U

p
C

on
ve

rte
r 2

RF

IF1

IF1

IF2
digital
IF2

digital
IF2

data
out

data
in

an
te

nn
a

D
S

P

IF2

Figure 1. Practical SDR architecture.

2.2 GNU Radio
While several commercial high-grade implementations of SDR

systems are available [2], the prohibitively high cost and high
degree of complexity make them inaccessible and impractical for
most university researchers and students who are interested in
studying and experimenting with SDR technology. As a result,
several simple lower-cost SDR implementations that either rely on
a general-purpose computing platform or are based on an
embedded DSP platform have been developed in the last few
years. The GNU Radio project [3] is a particularly good example
because of its user community, members of which are actively
engaged in both designing new hardware front ends, and
providing software interfaces to existing devices. The GNU
Radio project consists of freely available software to enable the
development of various radio configurations (such as an FM
receiver [4]). Furthermore, the GNU Radio project is
implemented using familiar programming tools, such as C++ and
Python, on the Linux operating system.

GNU Radio provides a library of signal processing primitives
implemented as C++ classes and the interface to link them
together. Any specific radio application is built by creating a
graph where the nodes are signal processing primitives and the
edges represent the data flow between them. Conceptually, each
primitive is designed to process an infinite stream of data flowing
from its input port to its output port. In addition to a fairly
complete catalog of data processing primitives, the library
provides a variety of data sources and sinks which allow
communication with files, networks connections, sound cards, or
ADC/DAC hardware. These included components provide great
flexibility for implementing software-defined radios.

The GNU Radio software library provides several primitives
that correspond to the radio engineer’s laboratory equipment. The
most practical primitive, which corresponds to a spectrum
analyzer, is the GrFFTAvgSink (Figure 2). The display shows the
breakdown of a short length of signal into its constituent
frequencies. From this, one can find carrier frequencies,
determine the signal-to-noise ratio, or measure a number of other
signal characteristics. As stated in the introduction, for an
experienced RF engineer this type of display is a powerful tool.

In addition to supplying a broad range of DSP components,
GNU Radio also provides a selection of working SDR
applications, including a complete FM receiver [4]. The design
provides a specification for the hardware front end that consists of
a high-speed ADC, an RF tuner module, and an antenna. With the
hardware in place, one can successfully receive and demodulate
broadcast FM signals.

Figure 2. GNU Radio RF spectrum display.

2.3 NCSA extensions to GNU Radio
The GNU Radio software package is a capable digital signal

processing library. It lacks, however, hardware for transmitting in
license-free radio bands (note that the original GNU Radio
hardware design [3] provides only the receiver path). Also, much
of the candidate hardware for new GNU Radio applications tends
to be quite expensive, discouraging potential users from
experimenting with the package and constructing radios for real-
world experimentation. Our recent efforts have extended the
GNU Radio receiver design into a 900 MHz narrowband software
defined radio transceiver [5]. The ability to transmit as well as
receive makes it possible to develop and test new algorithms and
protocols, to measure performance, and to provide a complete
operational visualization.

We use existing GNU Radio primitives and a custom primitive
to implement our FM transceiver. The structure of our SDR is
shown in Figure 3. The function of the blocks will be discussed in
detail in sections 3.2 and 3.3 below, however we will provide a
brief overview here. The transmitter path (Figure 3) begins with
the data source (VisRadioSource) which was developed
specifically for this project. It encodes a grayscale image, akin to
a piano roll, into an audio signal for the purposes laid out in the

160

introduction. Briefly, it does this by taking the inverse Discrete
Fourier Transform of each raster line of the image; for details, see
[5]. The VisRadioSource outputs a floating point signal at a
sampling rate of 48,000 samples/sec (the maximum output rate of
the sound card), which is fed to the FM modulator
(etgFrequencyModulator). This block was written by us because
at the time, the GNU Radio project did not have a FM modulation
primitive, though one is present in recent releases. The modulator
generates both in-phase (I) and quadrature (Q) baseband signals,
which are passed along as a complex signal. The modulated
signal is mixed with a 12 kHz sinusoid (GrMixer). It is then sent
to the sound card (GrAudioSink). The sound card is then
connected with an audio cable to the NCSA narrowband
hardware.

A complete FM receiver is a bit more complex (Figure 3). The
NCSA narrowband hardware is connected to the sound card. The
signal is read by the sound card (GrAudioSource) and fed into an
automatic gain control stage (GrAGC). The signal is then passed
to a 12 kHz. mixer (GrMixer) operating as a down-converter. The
signal passes through a low-pass filter (GrFIRfilterCCC) followed
by the FM demodulator (VrQuadratureDemod) followed by a
low-pass audio filter (GrFIRfilterFFF). Typically, it is then sent
to a sound card (GrAudioSink) where it can be listened to.

 GrAudioSource

GrAGC

GrMixer

GrFIRfilterCCC

GrFIRfilterFFF

GrAudioSink

48
,0

00
 s

am
pl

es
/s

ec

complex

short

complex

float

VrQuadratureDemod

complex

complex

RX

GrAudioSink

etgFrequencyModulator

VisRadioSource

float

float

GrMixer

complex

TX

GrAudioSource

GrAGC

GrMixer

GrFIRfilterCCC

GrFIRfilterFFF

GrAudioSink

48
,0

00
 s

am
pl

es
/s

ec

complex

short

complex

float

VrQuadratureDemod

complex

complex

RX

GrAudioSink

etgFrequencyModulator

VisRadioSource

float

float

GrMixer

complex

TX

Figure 3. NCSA GNU Radio FM transceiver block diagram.

3 SDR VISUALIZATION

3.1 Visualization metaphor
The block diagrams of the FM transmitter and receiver and the

frequency-magnitude plot introduced in the previous section
provide a useful description of how the radios work to someone
familiar with the radio engineering, but provide little insight to the
radio novice. The diagrams reveal neither how each block
functions, nor how the data passing through each block is
transformed. Ideally, one would like to see what happens to the
signal at each processing stage, how its spectral characteristics
change, how much bandwidth it occupies, how sampling rate
affects its bandwidth, how each block’s internal parameters affect
it, etc. The frequency versus magnitude plot (Figure 2) is an
excellent tool for the job, however due to the amount of
quantitative information it provides, and the rapidity with which it
changes, it requires training to properly interpret. Instead, we use

a variant of the frequency-magnitude plot called the spectrogram,
which provides a less complicated view of a signal’s spectrum,
and also preserves the signal history. To motivate the use of a
spectrogram to the viewer, we introduce it by employing the
metaphor of an old-fashioned player piano.

In a player piano, a roll of paper (known as a piano roll) is fed
through the player piano mechanism, where tiny perforations in
the paper use a simple mapping to control the notes played by the
piano. Holes on the left of the roll correspond to low notes and
holes on the right correspond to higher notes. The speed with
which the roll is fed through the mechanism determines the
music’s tempo. In essence, a piano roll is much like a
spectrogram in which the presence or absence of a hole in a
certain column denotes the presence or absence of a specific
frequency – i.e. it shows a binary amplitude. The player piano
analogy is not quite sufficient for our purposes; we need to be able
to represent many more frequencies than a piano, and must also
represent intermediate amplitudes as shades of gray. The
similarities, however, are adequate to provide the viewer with an
intuitive metaphor.

To visualize data as it flows through the radio, we examine the
spectrum of the signal after it passes through each functional
block; in essence, we treat each block as if it reads in a piano roll,
performs an operation on it, and outputs another roll, which is
then fed to the next block in the pipeline. To provide this
representation, we instrument the transmitter and receiver code
with visualization taps, which can connect to the output of each
functional block. These taps do not affect radio function; they
gather samples from their input, periodically create a line of a
spectrogram from the gathered data, and then send the
spectrogram via a TCP connection to a client. In our
visualization, the taps output a spectrogram approximately every
1/24th of a second (corresponding to 2048 samples acquired at the
sampling frequency of 48 kHz). The visualization tap includes a
prescaler, and outputs a line of byte-sized data. A client does not
need to process the data further to assemble each line into a
grayscale image of a piano roll. Throughout this section, we will
use a simple client to visualize the data. At the end of the section,
we will look at a more advanced client that embeds the data inside
a functional block diagram.

We also have the ability to add an audio tap at any point in the
pipeline, which we do to sonify the output of a particular
processing block.

3.2 Visualizing the FM transmitter
We begin by examining the radio as we transmit and receive a

simple tune. The image encoder that we describe in section 2.3
acts like a software version of the player piano for our
visualization. We can feed our transmitter with an image similar
to a piano roll; see Figure 4a. Our software player uses sine
waves to play the tune, and plays the image at a rate of
approximately 12 rows per second. If we listen to the signal at
this point, we hear a rendition of Mary Had a Little Lamb,
followed by a C Major chord. We should point out that in order
for signal features to be visible in print, we have thickened the
lines of our input image. When viewing the full size
visualization, we use only a single column per pitch.

The signal passes from the player through the FM modulator
(Figure 4b). We see that for the single notes, the modulator
produces a pattern of overtones. These patterns are fully
described by a family of mathematical functions called the Bessel
functions. For the chord, the modulated signal is much more
complex; it is obviously more than the sum of its component
notes. The important thing to note, however, is that frequency
modulation spreads the frequency information across the
spectrum. This redundant information will be helpful when we

161

reconstruct a noisy signal, but is also requires greater bandwidth
than does the unmodulated signal. In the framework of our player
piano metaphor, this means that we need many more keys on the
piano to represent the modulated signal than to represent the
original. Our images, therefore, must be very wide. Listening to
the signal at this point, the notes in the tune are recognizable, but
distorted by their overtones. The modulated chord, however,
sounds quite unlike its unmodulated counterpart.

After frequency modulation, the signal is mixed with a 12 kHz
carrier wave that simply shifts the signal to a higher frequency, or
in our visualization, shifts the signal to the right (Figure 4c). Note
that this shift does not widen the spectrum. Typically, this step is
done to shift the base signal, such as an audio signal that spans a
frequency range of 0 to 48 kHz, up to a radio frequency that can
be efficiently transmitted by an antenna (often in the megahertz or
gigahertz range). In fact, the NCSA narrowband hardware used in
this project includes a hardware 900 MHz mixer that does exactly
that. The reason we also perform this relatively small shift in
software is not just for illustration. Commodity sound cards for
PCs typically do not output frequencies below 10 Hertz, since 10
Hertz is below the threshold of human hearing. After a signal is
modulated, however, important information is carried at these
lower frequencies. If they are suppressed by the hardware, the
original signal can not be accurately recreated. Thus, we need to
move the center of the modulated signal away from this
“frequency hole”. The frequency on which the signal is now
centered is called the carrier frequency; we chose 12 kHz as our
carrier frequency because it is easy to implement a fast and
accurate mixer at 1/4th the sampling frequency, but we could have
used an arbitrary value.

Those unfamiliar with communication theory may be puzzled
by the high and low frequency symmetry exhibited in Figure 4. It
is beyond the scope of this paper to explain why this symmetry
occurs, for this we refer readers to [9]. However, in short, these
"mirror frequencies" are a result of the discrete nature of the
sampling process. It is also worth noting that in Figure 4c, the
high frequency components that are shifted above 48kHz wrap
around into the low frequency portion of the spectrum. Without
going into too much detail, the mathematics of DSP dictate that
any sampled signal can only represent frequencies less than or
equal to the Nyquist frequency, defined to be half the sampling
rate [9]. If a signal contains any frequency components higher
than the Nyquist frequency, an effect called aliasing occurs, in
which those high frequency components are mapped back below
the Nyquist frequency. In the case of our FM transmitter, we use
an effective sampling rate of 96 kHz; thus the Nyquist frequency
is 48kHz. Consequently, when we shift the signal up to the 12
kHz carrier frequency, those portions of the signal above 36 kHz
which were shifted above 48 kHz are mapped back down into the
0-12 kHz range. This counterintuitive behavior does not occur in
the continuous realm of analog radio; it is strictly a result of the
mathematics of discretely sampled signals.

Next, the signal is sent through the sound card to the NCSA
narrowband hardware. One subtlety of the modulation process
not shown in the visualization is that our modulator produces a
complex signal; that is, its output is of the form x+iy. It is not
necessary to produce a complex signal. One can design an FM
modulator to produce only real valued output (which would be
simply the real valued component of the complex signal). We
produce the complex output, however, because by assigning the
real component of the signal to the left speaker channel and the
imaginary component to the right, we can use the full capacity of
the sound card to provide more bandwidth than with a single
channel. In our analogy with a player piano, having the
bandwidth of both channels available allows us to transmit a
wider range of signals in the same way that having 88 piano keys

instead of 44 allows us to play a wider range of music. Before we
can transmit, however, it is necessary to combine the two channels
into a single analog signal; for this, the narrowband hardware uses
a technique called quadrature mixing ([6],[7]). At the same time,
it shifts the signal up by 10.7 MHz. A second hardware stage
mixes the signal with a 900 MHz carrier wave (the same operation
that we performed earlier in software) and passes the signal to the
antenna so that it may be transmitted. This quadrature mixing
technique is not strictly necessary; if we didn’t want the extra
bandwidth we could, in fact, send only the real component of the
demodulated signal, mixed with a 12 kHz carrier, to the sound
card. The analog hardware could then (theoretically, at least)
prepare this signal for broadcast in a single step by mixing it with
a radio frequency carrier.

Figure 4. The FM transmitter signal processing stages.

3.3 Visualizing the FM receiver
The FM receiver operates much like the transmitter in reverse,

but it includes extra components to deal with signal decay and
noise. Figure 5 shows different stages in the signal-processing
pipeline of the receiver. In part a, (VisRadioSource-to-GrAGC
path) we see the signal as we receive it from the sound card. It is
immediately apparent that although the input signal (Figure 5a)
bears a resemblance to the transmitted signal, it is much weaker.
In truth, this weakening can be attributed to the improper match
between the input gain on the sound card and the input from the
NCSA narrowband hardware, however this artifactual signal
decay is used to illustrate a very real phenomenon: radio signals
weaken in proportion to the inverse square of the distance from
the transmitter. The signal received by a radio 10 miles from a
radio station, therefore, is hundreds of thousands of times fainter
than that received by a radio 100 feet from a radio station. The
received signal therefore requires significant amplification, but
such amplification (or gain) cannot be performed using a constant
factor because the strength of the input signal can vary by orders
of magnitude. We must amplify the signal just enough to place it
within a known range – this process is known as Automatic Gain
Control (AGC). Generally, one must calculate the average power
of the input signal over a short period of time, and then use that to
determine the gain. FM signals have constant amplitude,
however, because all of the information they carry is contained in
the frequency makeup of the signal. AGC can be very simply
implemented on a complex, frequency modulated signal by using
DSP techniques. By dividing each sample by its norm, we obtain
a signal with a magnitude of one. While the NCSA narrowband
hardware has a built-in AGC stage, we also apply the software
defined AGC to the incoming signal. Figure 5b shows the output
of this operation. We then shift the signal down in frequency by
mixing it with another carrier wave. This operation is almost
identical to the one we performed in the transmitter; the difference
is that we mix with a time-reversed 12 kHz wave. From a visual
perspective, this simply shifts the image to the left (Figure 5c).

a

b

c

162

After the signal has passed through the AGC and carrier
removal stages, it is now evident that the signal contains a
significant amount of noise. Noise in an input signal comes from
a variety of sources such as imperfections in the transmit/receive
hardware, interference from other radio sources, and from natural
background radiation. It is not an exaggeration to say that the
majority of effort in designing a radio is in reducing noise from a
signal. This is not a simple problem; there is no way to
automatically decide whether part of a signal is information or
noise. From a visual perspective, we might ask if a gray pixel
represents a note being played or a lightning strike miles away.

Although there is no easy answer to this question, we can use
our knowledge about the type of signal being sent to reduce noise.
For instance, even simple visual inspection of our transmission
pipeline reveals that almost all of the non-zero spectral
information in the modulated signal lies between zero and 12 kHz.
We can therefore reasonably infer that any component of the
signal above 12 kHz is almost certainly noise. Another factor to
consider is that there appears to be an artifact clearly visible at 12
kHz in Figure 5c, perhaps due to the sound card hardware. We
can rid our signal of both a substantial amount of noise and the
artifact merely by zeroing out all of the frequency information
from 11.5 kHz on up in an operation called filtering. We wish to
remove all portions of the signal above a certain frequency. We
therefore employ a type of filter called a low-pass filter, which
passes frequency information below a certain level called the cut-
off frequency. As one can see in Figure 5d, low-pass filtering is a
brute force technique because it is insensitive to whether or not
the filtered high-frequency information is actually noise. It also
leaves unchanged noise in the lower part of the spectrum. The
substantial proportion of the noise eliminated by low-pass filtering
reveals it to be a powerful technique, however. For this reason,
low-pass filtering and others of its kind (high-pass, band-pass, and
band-reject filtering) are the tools most widely employed to
eliminate noise.

Figure 5. Signal processing stages in the FM receiver, with details

of a sound-card artifact (c), DFT leakage (d), noise
reintroduced by modulation (e), and low-pass filter cutoff (d).

The detail for Figure 5d exhibits a slight horizontal smearing
between successive notes (see inset in Figure 4a for comparison).
This artifact is purely visual, and is not audible in the sonification.

It occurs due to the fact that the visualization is formed by taking
the spectrum of the signal by taking the DFT of about 1/12th of a
second of signal, in essence trying to recreate the piano roll from
the signal. As the transmitter and receiver are not synchronized, it
is likely that when a note changes pitch that it does so in the
middle of the 1/12th of a second interval. Due to the mechanics
of the DFT (this issue is known as DFT leakage [9]), this appears
as a smear rather than as two distinct notes. Adding some form of
synchronization would be possible by modifying the transmitted
signal, but would complicate the radio design. We decided to
keep the transmitter and receiver simple, and accept the artifact.

After filtering, we demodulate the signal. The result of this
process is shown in Figure 5e. At this point in the receiver, our
original signal is clearly recognizable, but some noise is still
present. In fact, demodulation has introduced some noise into a
previously filtered portion of the spectrum. If we sonify this stage
of the radio pipeline, this noise is clearly audible as hissing.
Again, we employ knowledge of the original signal to help us
reduce the noise. Since the original signal contained only
frequencies below 6 kHz, we pass the signal through a low-pass
filter as before. This time, however, we set the cut-off frequency
to only 6 kHz. The final result still contains some visible noise,
and we can see the smearing artifact (Figure 5f). Aurally,
however, we have quite faithfully reproduced the input signal.

In reference to our claim that our visualization allows
quantitative techniques to be used, notice how easy it is to read
the low-pass cut-off values from Figure 5 (d and f). Our
calibration bar is a bit coarse, but it is clear that the signal in
Figure 5f falls off sharply just below 6 kHz.

3.4 Using visualization to understand FM
Now that we have successfully transmitted and received a

simple tune, we can return to examine the frequency modulator.
While the theory behind FM is beyond the scope of this work, a
brief look at the real form of the equation for frequency
modulation is in order [8]:

))(cos()(
0
∫=
t

dssuktx

Here, u is the input signal, x is the modulated signal, and k is a
unitless parameter called the modulation index. The modulation
index controls how much bandwidth is used by the modulated
signal, and can be estimated by using a formula known as
Carson’s Rule [8]. To visualize the effect that changing the
modulation index has upon the signal, we again transmit a “piano-
roll”. This time however, we use the image in Figure 6 as our
input. The interpretation of the image is exactly the same as in the
score for Mary Had a Little Lamb; when a dark pixel is
encountered, a sine wave is played. We can still listen to this
signal, though doing so is unpleasant. For the sake of space, we
will show only four stages of the radio pipeline: the original
source, the modulated signal, the received signal immediately
before it is demodulated, and the final, filtered signal. These
stages correspond to Figure 4 (a and b), and Figure 5 (d and f).

Figure 6. Original image.

Figure 7 shows these four image signals using a modulation
index which we found empirically to produce the best quality
transmission. One can see the ghosts of the original image in the
modulated signal; these are often referred to as significant

b

c

d

a

e

f

163

sidebands, and they correspond to the overtones we saw in our
earlier visualization. The demodulated signal is a clear and
accurate recreation of our original image.

Figure 7. Illustration of an adequate modulation.

Figure 8. Illustration of insufficient modulation.

Figure 9. Illustration of overmodulation.

In Figure 8, we see what happens when the modulation index is
reduced by a factor of 10. The modulated signal looks much like
the original image except for the fact that it is dim and fades a bit
on the right side. No other significant sidebands are present. If
we look at the signal on the receive side, right before it is
demodulated (Figure 8), we find that the intensity of the
modulated signal is not significantly stronger than the intensity of

the noise, and thus we should not be surprised that the
demodulated signal is quite noisy.

Increasing the modulation index does increase the noise
immunity, but the modulation index cannot be increased without
bounds. Figure 9 shows what happens when we increase the
modulation index by a factor of 10. For purposes of illustration,
we have removed the first low pass filter from the receiver and
transmitted the signal under low noise conditions. With the filter
in place, the central portion of the modulated signal would be
discarded, resulting in even more distortion of the demodulated
result. Even without the filter, the high modulation index leads to
a large number of significant sidebands. The higher frequency
sidebands begin to interfere with their symmetric counterparts
which we remarked upon in Section 3.3 above. As is evident in
Figure 9, when this occurs, the signal can no longer be
demodulated successfully.

4 DISCUSSION AND FUTURE WORK
Studying RF engineering concepts has always been a difficult

task for students as it involves advanced mathematics and a lot of
hands-on experiments. Students have to validate the
mathematical equations or derive new relations based on
experimental observations. The use of various software-based
simulation tools, such as Matlab provides a great deal of help, but
these tools are not as intuitive as one might wish. On the other
hand, the visualization tool presented in this paper allows linking
an implementation of a real RF design with a familiar visual
metaphor that is informative and easy to understand. We are
investigating how to include other forms of visualization, and
especially interaction, to make the current tool more complete and
engaging to use.

The proposed process visualization approach is based on the
idea of visualizing spectral data in order to understand the
process. We transmit images encoded as spectral data so that
visual patterns are easily perceptible. In our current
implementation, we focus on the qualitative data, and reduce the
quantitative data. However, the latter is important for judging the
quality of performance of individual components in the SDR
pipeline. We are investigating how to integrate this type of data
into the plots in a way that can enhance the visualization. For
instance, we have investigated the use of color in our
visualizations for such a purpose. Figure 10 shows an early
example in which what is perceived to be signal noise is shown in
gray whereas the actual signal is shown in color. We carefully
adjust the border between the brightest gray level corresponding
to the highest noise value and the darkest shade of blue
corresponding to the lowest level of a useful signal so that the
noise does not appear more intense then the signal. Such a color-
enhanced spectrogram provides a more intuitive illustration of
what constitutes the signal and what belongs to the noise floor and
what portion of the spectrum is occupied by the useful signal vs.
noise whereas this distinction is not clear in Figure 5b. We are
investigating what other signal characteristics can be mapped into
color as well as the use of other color scales.

Figure 10. Experimenting with color.

164

We are interested in creating a more metaphorical 3D
visualization that will convey the narrative of the radio's
operation, particularly to an uninitiated audience, and will enable
to embed more information about the radio operation than the 2D
functional block diagram. We have developed a 3D Visible Radio
client, called SDRVis, which is a refinement of the functional
block diagram. In SDRVis, the edges representing links between
blocks are widened into broad paths, upon which the spectrograms
scroll from source to destination (Figure 11). Wedges represent
DSP primitives, and correspond to the blocks of the functional
block diagram. Signals in intermediate blocks are buffered, so
that a signal appears to scroll into a functional block, be modified,
and its output scrolls out, rather than appears at the output of all
stages simultaneously. One may navigate closer to areas that one
wished to inspect; Figure 12 shows a close-up of the
demodulation block of the receiver. Note how shadows in the
background allow the viewer to see the functional block diagram
of the SDR at all times. Figure 12 also shows that the Visible
Radio is also able to transmit and receive grayscale images with a
good degree of fidelity.

Figure 11. NCSA GNU Radio FM receiver in 3D.

Figure 12. A detailed view of the demodulator node.

The 3D Visible Radio was created using a 3D animation
program called Maya. A custom Maya plug-in performs the
layout of the 3D block diagram automatically at start-up and
allows buffered signal data to be sent to the real-time visualization
client over a socket.

Besides serving as a good educational tool, the existing
visualization software has other applications. However, current
implementation requires a manual inclusion of data taps in the
SDR code and a manual setup of the visualization client. We are
investigating how the SDR code can be automatically
instrumented with the data probing taps and how the visualization
client can reconfigure itself for a new chain of SDR processing
blocks. This is particularly of interest with the latest version of
the GNU Radio code that allows a dynamic modification of the
data processing pipeline.

So far we have implemented FM radio visualization with only
one parameter adjustable (FM modulation constant). We are
investigating how other radio characteristics can be controlled
interactively and their effects on the radio performance visualized.
We are also looking into implementing other types of radio
designs, such as Amplitude Modulated (AM) radio, data modem,
etc. An assortment of such radio modalities available for
visualization could be a useful tool in studying and comparing RF
designs by the EE students. We are interested in integrating our
Visible Radio project into introductory RF and DSP design
courses offered to the EE students. This, however, will require a
development of a more comprehensive SDR visualization toolkit.

5 ACKNOWLEDGEMENTS
We thank both Dr. Paige Scalf and Stuart Levy for comments

on earlier versions of this manuscript. This work was performed
at the National Center for Advanced Secure System Research
(NCASSR) and funded by the Office of Naval Research (ONR)
grant N00014-3-1-0765.

REFERENCES
[1] J. Reed. Software Radio: a Modern Approach to Radio Engineering.

Prentice Hall PTR, Upper Saddle River, NJ, 2002.
[2] W. Tuttlebee (ed.). Software Defined Radio: Origins, Drivers and

International Perspectives. John Wiley & Sons, Ltd., West Sussex,
UK, 2002.

[3] E. Blossom. GNU radio: tools for exploring the radio frequency
spectrum, Linux Journal, 122, 4, June 2004.

[4] E. Blossom. Listening to FM radio in software, step by step. Linux
Journal, 125, 1, Sept. 2004.

[5] A. Betts, M. Hall, V. Kindratenko, M. Pant, D. Pointer, V. Welch, P.
Zawada. The GNU software radio transceiver platform. In
Proceedings of SDR Technical Conference, volume C, pages 41-46,
November 2004.

[6] G. Youngblood. A Software Defined Radio for the Masses, Part 1.
QEX, 213, 13-21, 2002.

[7] G. Youngblood. A Software Defined Radio for the Masses, Part 4.
QEX, 217, 20-31, 2003.

[8] M. Frerking. Digital Signal Processing in Communication Systems.
Van Nostrand Reinhold, New York, NY, 1993.

[9] R. Lyons. Understanding Digital Signal Processing. Prentice Hall
PTR, Upper Saddle River, NJ, 1997.

165

