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Abstract Electromagnetic tracking systems are a com-
mon component of many virtual reality installations.
Their accuracy, however, suffers from the distortions of
the electromagnetic field used in calculating the tracker
sensor’s position. We have developed a tracker calibra-
tion technique based on a neural network that effectively
compensates for the errors in both tracked location and
orientation. This case study discusses our implementa-
tion of the calibration algorithm and compares the re-
sults with traditional calibration methods.
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1 Introduction

The definition of virtual reality requires that the com-
putational system tracks the users in order to replace or
augment one or more of their sensory inputs in accor-
dance with their movement. Many developers of virtual
reality systems have found that electromagnetic tracking
systems (Raab et al. 1979) are a reasonable solution for
implementing this essential part of the medium.

The popularity of electromagnetic tracking in VR
systems stems from the many benefits provided by this
technology. Unlike position tracking systems based on
sonic and visual means of sensing movement, electro-
magnetic tracking systems are not limited by the line-of-
sight. This allows the tracker transmitter to be hidden
from the user, perhaps on the opposite side of large
screens, and it allows many people to stand in close
proximity without affecting the ability to track. Elec-
tromagnetic tracking also avoids problems due to inertia
or requirements caused by physical connections between
the tracked object and the tracking system as are the

case with mechanical linkage-based tracking systems
(Meyer et al. 1992). The sensors that accompany elec-
tromagnetic tracking systems are fairly easy to utilize,
are relatively small and can be easily mounted on the
body or objects to be tracked. Interfacing with several
sensors associated with a single system is straightfor-
ward too.

Electromagnetic tracking systems, however, do have
some serious deficiencies. In particular, tracking accu-
racy falls off rapidly with very limited overall
range—typically within about 8 ft. Nixon et al. (1998)
found that tracking error increases at a rate propor-
tional to the fourth power of the distance between the
transmitter and receiver units. Another major problem is
that any magnetically active material in the vicinity can
cause the tracked results to be warped (Nixon et al.
1998). This problem, however, can often be corrected via
an analytical procedure referred to as tracker calibration.

Raab et al. (1979) foresaw the need for calibration
and suggested that the correction of the distorted mea-
surements can take the form of additive vectors for
location error correction and a sequence of rotations for
orientation error correction and can be stored either in a
look-up table or as polynomials in the position space.
Most of the work undertaken after Raab’s report
implements a variation of one of these two approaches.
We have sought to apply and evaluate a neural network-
based approach as an alternative to the way most elec-
tromagnetic tracking calibration has thus far been
implemented.

2 Related work

A detailed survey of various tracker calibration tech-
niques can be found in Kindratenko (2000); here we only
briefly describe some of them.

Ghazisaedy et al. (1995) and Czernusenko et al.
(1998) applied tri-linear interpolation to compensate for
the errors in tracked location. Livingston and State
(1997) used tri-linear interpolation for correcting the
errors in the tracked location and a sequence of spherical
linear interpolations between the quaternions repre-
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senting the tracked orientation to correct the errors in
the orientation.

Bryson (1992) used a weighted look-up table method
to compensate the errors in the tracked location. Kind-
ratenko and Bennett (2000) extended this technique to
compensate the errors in both the tracked location and
orientation. Briggs (1999) used a look-up table interpo-
lation scheme to correct the errors in the tracked location
similar to the one described in Livingston and State
(1997). The difference between Briggs’s and Livingston’s
methods is in the way the look-up tables are re-sampled
from the measurements taken on an irregular grid.

Several researchers have used high-order polynomial
fit. Bryson (1992) applied fourth-order polynomials to
compensate for the errors in the tracker’s location.
Kindratenko (1999) and Ikits et al. (2001) extended this
technique to correct the errors in the tracker orientation
as well. Kindratenko (1999) used Euler angles, whereas
Ikits et al. (2001) used quaternionial representation for
orientation.

Zachmann (1997) proposed a scattered data inter-
polation scheme using Hardy’s Multi-Quadric method
with LU matrix decomposition to solve the interpolation
equations. The rationale for using this approach is that
Hardy’s Multi-Quadric polynomials oscillate less than
Newton or Lagrange interpolation polynomials.

It is usually assumed that the error in tracked loca-
tion and orientation is a function of the tracker location
only. Livingston and State (Livingston and State 1997)
suggested that the tracker orientation plays a role as
well; however, we have not seen any other reports in the
literature researching this conclusion. Moreover, Ikits
et al. (2001) pointed out that the rotation error defini-
tion used in Livingston and State (1997) is orientation
dependent, which may explain the rotation error
dependence on the orientation observed by the
researchers. Therefore, in thus study, we assume that the
error in tracked location and orientation is the function
of the tracked location only.

Thus far, most of the calibration techniques reported
in the literature are based either on an interpolation
scheme (tri-linear or look-up table) or on a polynomial
fit (high-order polynomials or Hardy’s Multi-Quadric
polynomials). Both approaches require a relatively dense
calibration table, otherwise they may not provide the
desirable accuracy. The polynomials are quite good at
capturing the overall shape of the distorted field; how-
ever, they miss smaller details, e.g., when sudden but
small localized changes to the electromagnetic field oc-
cur. The lower the order of the fitting polynomial, the
greater the error. However, as the order increases, the
polynomial oscillations occur. This results in additional
errors, particularly at the locations where the errors were
initially low (Kindratenko 1999).

Interpolation-based calibration techniques attempt to
linearly interpolate the error value at each location
based on the error values of nearby locations. However,
the actual errors change nonlinearly. As a result, inter-
polation techniques perform well in the presence of

small error changes and perform relatively poor when
the electromagnetic field warps substantially.

3 Proposed method

We propose to use a feed-forward neural network
(Bishop 1995; Müller et al. 1995) to approximate the
shape of the distorted electromagnetic field, and thus, to
predict the receiver’s actual position (both location and
orientation) from its reported position. The entire cali-
bration procedure consists of obtaining an appropriate
training set (calibration table) and training the network
until the overall network output error reaches a desir-
able level of accuracy. Once the network is trained, it can
be used to correct the tracker errors.

3.1 Calibration table measurements

The main use of the calibration table is to establish a
correspondence between the true position and the posi-
tion reported by the tracking system. In practice, this
requires an alternative location sensing tool and usually
can be achieved only at some limited number of loca-
tions. As we move the tracker sensor, the electromag-
netic tracking system reports tracker sensor position
relative to the origin of the tracker transmitter. Our goal
therefore is to measure the actual physical position of
the tracker sensor relative to the origin of the tracker
transmitter. Several techniques have been proposed in
the literature; we use the calibration table measurement
technique described in Kindratenko (1999) and Kind-
ratenko and Bennett (2000). The procedure consists of
moving the receiver on a regularly spaced grid with
known coordinates and with a known constant orien-
tation and recording both the known true position of the
tracker sensor and the position reported by the tracking
system. The resulting table contains tracker readings
that are taken on the regular grid in the undistorted true
space.

It is important to avoid any further magnetic field
distortions while measuring the exact location of the
sensor with the help of an alternative measuring tech-
nique. To achieve this, a simple sensor holder was built
consisting of a 1·1·0.1 foot wooden platform with a
housing attached at the top and a set of plastic pipes of
the length 2, 3, 4, 5, 6, and 7 ft that can be plugged into
the housing (Fig. 1a). Moving the platform on the reg-
ular grid marked on the floor (Fig. 1b) and changing the
pipes allows the placement of the sensor at the points
whose locations can be precisely determined. After a
very careful alignment, the precision of this measuring
technique is ±0.01 m, ±1�.

The main advantage of this approach is its simplicity
and a very low cost. However, this is a time-consuming
technique and it requires a special care to ensure the
desirable degree of accuracy. Also, the relation (trans-



formation from one system to another) between the
grid-based coordinate system and the electromagnetic
tracker coordinate system needs to be known.

The data measurement procedure is repeated twice,
once on the grid and once in-between the grid, resulting
in two different datasets. The first dataset (calibration
table) is used to train the network whereas the second
dataset (validation table) is used to verify the quality of
the calibration once the network is trained.

3.2 Neural network design considerations

Our goal is to devise a neural network capable of pre-
dicting the true tracker sensor position based on its
tracked position. It has been shown that a feed-forward
neural network with hidden layers can represent any
smooth continuous function Rn fi Rm (Bishop 1995;
Müller et al. 1995). This is achieved by training the
neural network with an error back-propagation algo-

rithm by presenting examples of known function values
for known function arguments (the calibration table). In
our case, we assume that the error in the tracked loca-
tion and orientation is the function of the tracked
location only. Therefore, the neural network designed
for location error correction should accept three in-
puts—x, y and z coordinates of the tracked loca-
tion—and should produce three outputs: x, y and z
coordinates of the corrected location. In this study, we
use Euler angles to represent the tracker orientation.
Therefore, in order to compensate for the errors in the
tracked orientation, the neural network should accept
three inputs—x, y and z coordinates of the tracked
location—and should produce three outputs: rotation
error for yaw, pitch and roll. These rotation errors are
then used to rotate the actual tracked rotation to com-
pensate for the field distortion as described in Kind-
ratenko (1999).

Thus, we need to implement two separate neural
networks. The first neural network is used to directly

Fig. 1 Calibration table acquisition device used in this study. Two-dimensional grid (b) is laid on the floor in front of the I-Desk; sensor
holder (a) is moved on the grid



predict the true location based on the tracked location,
and the second neural network is used to predict rota-
tion errors for a given tracked location. We do not at-
tempt to merge these two networks into one because the
functions that they represent behave quite differently
and are defined on different domains. We also do not
attempt to directly predict the corrected Euler angles
because we would need to supply the network with both
the tracked location and orientation, which is a mixed
domain data.

We still need to decide on the network architecture
(number of hidden layers, number of neurons in each
layer, type of transfer functions, etc.) and on the type
and parameters of the error back-propagation training
algorithm. There is no precise recipe about selecting the
right network complexity for a given problem and the
optimal solution can often be found only experimen-
tally. The number of hidden layers and number of
neurons in each layer is related to the complexity of the
function to be represented by the network. The larger
the number of local minima and maxima in the function,
the more likely it will require a network with higher
complexity. However, higher complexity may also lead
to a network which is not able to generalize well enough
and/or will require a lengthy training procedure.

In this study, we use a single hidden-layer network
architecture with tan-sigmoid transfer functions for the
neurons in the hidden layer and linear transfer functions
for the neurons in the output layer (Bishop 1995; Müller
et al. 1995). The exact number of hidden-layer neurons
required for an optimal solution is determined experi-
mentally by training networks of different sizes and
identifying the one with the best overall performance.

Various error back-propagation training algorithms
can be employed to train a feed-forward neural network
(Bishop 1995; Müller et al. 1995). Ideally, we would like
the training procedure to be fast (the network should
converge in a small number of iterations), and we would
like to have an obvious training termination criterion.
We evaluated several such techniques and selected

Bayesian regularization in combination with Levenberg-
Marquardt training (Foresee and Hagan 1997). Bayesian
regularization minimizes a linear combination of
squared errors and weights. It also modifies the linear
combination, so that at the end of training the resulting
network has good generalization abilities.

The neural network architecture and training proce-
dure used in this study were selected after evaluating a
number of other network configurations. For example,
we considered a multilayer neural network with the
standard back-propagation training, but were not able
to achieve a desirable degree of performance (Saleh et al.
2000). This points out the main difficulty when using a
neural network-based approach: there is no precise
recipe about the network architecture and training
procedure. One should consider several alternatives be-
fore settling down with a particular technique.

4 Experimental results and discussion

The proposed calibration technique was tested with
three tracking systems: Ascension Technology Flock of
Birds installed in a CAVETM-like environment (referred
to as FoB1), Ascension Technology SpacePad used with
an ImmersaDeskTM (SpacePad) and Ascension Tech-
nology Flock of Birds installed in the CAVE (FoB2).
The size of the tracked volume and the number of
measurements used in the calibration and validation
tables are given in Table 1. Errors in tracked location
and orientation are given in Table 2. Note that FoB2
dataset is very sparse; the measurements for the cali-
bration table were taken 2 ft apart. Therefore, we expect
that look-up table interpolation calibration technique
should perform poorly as compared, for example, to the
high-order polynomial fit calibration technique.

Our first task is to find the optimal number of neu-
rons in the hidden layer for each dataset. The approach
that we have chosen consists of training neural networks
with 3 to 21 neurons in the hidden layer using data from

Table 1 Dimensions of the calibration and validation datasets

Dimensions Tracking system

FoB1 SpacePad FoB2

Minimum (m) Maximum (m) Step (m) Minimum (m) Maximum (m) Step (m) Minimum (m) Maximum (m) Step (m)

Calibration table
x �1.24 1.24 0.31 �0.93 0.93 0.31 �1.24 1.24 0.62
y 0.62 1.86 0.31 0.62 1.55 0.31 0.62 2.48 0.62
z �0.93 1.24 0.31 0.16 1.40 0.31 �1.24 1.24 0.62
# 432 140 88

Validation table
x �1.09 1.09 0.31 �0.78 0.78 0.31 �1.09 1.09 0.31
y 0.62 1.86 0.31 0.62 1.55 0.31 1.52 1.52 N/A
z �0.78 1.09 0.31 0.31 1.24 0.31 �1.09 1.09 0.31
# 336 72 64

The origin of FoB1 coordinate system is in the middle of the CAVE; the origins of SpacePad and FoB2 coordinate systems are in the
middle of the floor of the I-Desk/CAVE



the calibration datasets and validating their performance
using data from the validation datasets. Once a partic-
ular network is trained, we present the corresponding
validation dataset to the network and compute the net-
work’s output, which is then used to compute the
average error between the expected true position stored
in the validation file and the calibrated position. The
results are shown in Figs. 2 and 3. On the basis of these
results, we select the most appropriate number of hid-
den-layer neurons for a given dataset and a given cali-
bration domain (location and orientation). Thus, in
essence, we calibrate the tracking system with different
networks and pick up the one that produces the best
results. As seen from the plots, an optimal solution for
each dataset in each calibration domain typically re-
quires a different number of neurons. For example,
FoB2 dataset requires the network with 11 neurons in

the hidden layer in order to produce the best location
calibration results and requires the network with 12
neurons in order to produce the best orientation cali-
bration results. Table 3 summarizes our final findings
for all three datasets.

Once we know which network performs best, we can
use it to calibrate the system. Table 4 summarizes the
results of the calibration based on the data from the
validation tables. For example, the average tracked
location error for FoB1 validation dataset is
0.161±0.111 m (Table 2), whereas the average location
error after the calibration is 0.025±0.01 m
(Table 4)—almost an order of magnitude improvement.
Likewise, the average tracked orientation error for
FoB1 dataset is 8.8±5.8� (Table 2), whereas the aver-
age orientation error after the calibration is 1.9±1.3�
(Table 4)—a fourfold improvement over the uncali-

Table 2 Error statistics for uncalibrated tracking systems

Statistics Tracking system

FoB1 SpacePad FoB2

Location (m) Orientation (�) Location (m) Orientation (�) Location (m) Orientation (�)

Mean 0.161 8.8 0.165 5.5 0.128 3.6
SD 0.111 5.8 0.067 3.5 0.099 1.6
Minimum 0.022 0.0 0.016 0.4 0.024 1.0
Maximum 0.619 27.8 0.307 18.0 0.476 7.9

Errors in the tracked location are measured as the distance between the tracked location and the actual true location of the tracker sensor.
Errors in the tracked orientation are measured as the angle between the direction of the tracked orientation and the actual true orientation
of the tracker sensor

Fig. 2 Average location error after the calibration as a function of the number of neurons in the hidden layer. Errors in the calibrated
location are measured as the distance between the calibrated location and the actual true location of the tracker sensor



Table 3 Summary of the neural network training and optimal number of neurons in the hidden-layer selection procedures for all three
datasets

Dataset Calibration domain Calibration error Number of neurons Number of epochs

FoB1 Location 0.025 m 20 519
Orientation 1.9� 11 247

SpacePad Location 0.021 m 18 531
Orientation 2.4� 10 996

FoB2 Location 0.040 m 16 160
Orientation 1.6� 12 237

Table 4 Error statistics for the calibrated tracking systems

Statistics Tracking system

FoB1 SpacePad FoB2

Location (m) Orientation (�) Location (m) Orientation (�) Location (m) Orientation (�)

Mean 0.025 1.9 0.021 2.4 0.040 1.6
SD 0.010 1.3 0.014 2.0 0.023 1.1
Minimum 0.005 0.1 0.003 0.1 0.006 0.2
Maximum 0.055 7.0 0.078 9.3 0.116 6.0

Errors in the calibrated location are measured as the distance between the calibrated location and the actual true location of the tracker
sensor. Errors in the calibrated orientation are measured as the angle between the direction of the calibrated orientation and the actual
true orientation of the tracker sensor

Fig. 3 Average orientation error after the calibration as a function of the number of neurons in the hidden layer. Errors in the calibrated
orientation are measured as the angle between the direction of the calibrated orientation and the actual true orientation of the tracker
sensor



brated orientation. Similar results were obtained for
two other tracking systems. Thus, in all cases the
neural network-based calibration technique was able to
significantly decrease errors in both the tracked loca-
tion and the tracked orientation.

Our second task is to analyze the performance of the
neural network-based calibration as compared to other
calibration techniques found in the literature. In par-
ticular, we are interested in the overall performance and
its statistical (in)significance. The overall performance

Fig. 4 Comparison of the results for location (a) and orientation (b) calibration by fourth-order polynomial fit, look-up table
interpolation and the neural network-based calibration techniques. Vertical bars represent average error, whereas error bars indicate
standard deviation about the average error (see Table 5 for numerical values)

Table 5 Calibrated location and orientation errors after the calibration with three different calibration techniques

Location (m) Orientation (�)

FoB1 SpacePad FoB2 FoB1 SpacePad FoB2

Polynomial fit Mean ± SD 0.028±0.012 0.023±0.016 0.063±0.031 2.0±1.4 2.5±1.9 2.1±0.9
Minimum, maximum 0.001, 0.070 0.007, 0.088 0.013, 0.140 0.0, 7.8 0.4, 9.0 0.2, 4.3

Interpolation Mean ± SD 0.028±0.011 0.024±0.021 0.068±0.031 1.7±1.5 2.3±1.9 1.9±0.8
Minimum, maximum 0.005, 0.081 0.004, 0.122 0.020, 0.151 0.0, 6.8 0.3, 9.2 0.4, 4.5

Neural network Mean ± SD 0.025±0.010 0.021±0.014 0.040±0.023 1.9±1.3 2.4±2.0 1.6±1.1
Minimum, maximum 0.005, 0.055 0.003, 0.078 0.006, 0.116 0.1, 7.0 0.1, 9.3 0.2, 6.0

Table 6 t test results

Domain t test samples t test value

BoF1 SpacePad FoB2

Location Polynomial fit—neural network 5.82 2.26 4.68
Interpolation—neural network 6.29 1.54 5.26

Orientation Polynomial fit—neural network 4.66 1.53 2.59
Interpolation—neural network �3.63 �0.18 1.45
t-critical for a=0.05 and the given degree of freedom 1.97 1.99 2.00

When the t test value is closer to 0 than the t critical value, the initial hypothesis that there is no statistical difference between the
calibration results obtained with two different calibration procedures is true. The results indicate that in most cases no statistically
significant improvements were obtained by the neural network-based calibration technique as compared to other calibration techniques
when attempting to calibrate the SpacePad electromagnetic tracking system. At the same time, the improvements obtained for two other
electromagnetic tracking systems when using neural network-based calibration technique are, in most cases, statistically significant



can be measured using first- and second-order statistics
(mean, standard deviation, etc.) about the difference
between the true tracker sensor position and the position
obtained as the result of calibration using different cal-
ibration techniques. The statistical significance of the
differences in performance can be verified with paired
two sample t test (‘‘Student’’ 1908). In our case, this test
is used to determine whether the calibration results ob-
tained with two different calibration techniques are
likely to have distributions with equal average values, or,
in other words, there is no statistically significant dif-
ference between the results obtained with different cali-
bration techniques. When the t test value is closer to 0
than the t critical value for the corresponding degrees of
freedom at 95% confidence level, the initial hypothesis
that there is no statistical difference between the cali-
bration results obtained with two different calibration
procedures is true.

We compare the calibration improvements obtained
with the proposed method with the improvements ob-
tained with the fourth-order polynomial fit calibration
technique (Kindratenko 1999) and the interpolation-
based calibration scheme (Kindratenko and Bennett
2000) based on the same calibration and validation
datasets used in this study. The results are shown in
Fig. 4 and Table 5. On the basis of the comparison of
the mean errors, the neural network calibration tech-
nique outperformed two other calibration techniques
when applied to correct tracked locations. However, we
obtained mixed results while attempting to correct the
errors in the tracked orientation: the interpolation-
based method outperformed the neural network-based
technique in two out of three cases. It is interesting to
note that the neural network-based approach outper-
formed two other techniques both in location and
orientation calibration when applied to FoB2 dataset,
which is a sparse dataset as compared to two other
datasets. This indicates that the neural network-based
calibration approach may require a smaller calibration
dataset.

Most of the improvements on FoB1 and FoB2
datasets achieved when using the neural network-based
calibration technique compared to other calibration
methods are statistically significant as verified with
paired two sample Student’s t test (Table 6). The
improvements for SpacePad dataset in most cases are
not statistically significant. However, the practical sig-
nificance of the improved calibration results depends on
the application in which the tracker system is used. For
example, in an architectural walk-through application,
the difference between 0.063 and 0.04 m (calibrated
FoB2 dataset) is negligible. However, the same error
may be very significant in a medical application in which
medical devices are tracked and remotely controlled.
Therefore, the importance of the improvements ob-
tained with the neural network calibration technique
should be judged in the context of the actual application
for which the calibration is being performed.

5 Conclusions

In this study, we applied a single-layer feed-forward
neural network to calibrate the location and orientation
errors typically present in electromagnetic tracking de-
vices. We evaluated the proposed technique with three
different tracking systems and found that it can be used
to significantly improve their tracking accuracy. We also
found that this method produces results that are often
better than the results produced by two other well-
known techniques. In particular, we were able to achieve
lower overall errors while calibrating tracked location.
However, look-up table rotation interpolation outper-
formed the neural network location calibration tech-
nique in two out of three cases. We also found some
indications that the neural network-based calibration
approach may require a smaller calibration table, al-
though a more detailed study is required to verify this
observation. Even though the improvements obtained
with the proposed calibration technique can be statisti-
cally significant, the benefits of this approach should be
considered within the framework of the actual applica-
tion for which the calibration is thought to be applied.
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