
GPU Implementation of CG
solver for MILC

Guochun Shi

Innovative Systems Laboratory

Lattice QCD: Solving the following linear system

The wilson dslash operator

BU code: dslash reference implementation in CPU

BU code: GPU kernel code (x+ direction)

Disclaimer

• The source code is from Bosten University’s
Quda package.

• The diagrams/formulas are from two papers
– C. Bernarda, C. DeTarb, S. Gottliebc, U.M. Hellerd, J. Hetricke, N. Ishizukaa, L. K¨arkk¨ainenf , S.R. Lantzg, K.

Rummukainenc, R. Sugarh, D. Toussainte and M. Wingatei, “Lattice QCD on the IBM Scalable POWERParallel Systems
SP2”

– K. Z. Ibrahim, F. Bodin, “Efficient SIMDization and Data Management of the Lattice QCD Computation on the Cell
Broadand Engine”

CG in BU code

 r2

 r2_old

 p

 (where is the preconditioned matrix)

Standard CG procedure from “An Introduction to
the Conjugate Gradient Method. Without the
Agonizing Pain” : A x = b

CG code in BU code

Different solution types solve different
equations





 the same

QUDA_MAT_SOLUTION

QUDA_MATPC_SOLUTION

QUDA_MATPCDAG_MATPC_SOLUTION

Staggered Dslash reference Implementation

Staggered Dslash GPU implementation

• Similar to the Wilson Dslash
• Link representation is the same

– Use 5 float4 to represent 3x3 complex matrix (18
floats used, 2 floats ununsed)

– But staggered Dslash has 2 links, wilson has 1 link only

• Spinor representation differ slightly
– Wilson: 6 float4 to represent 4x3 complex matrix

(total 24 floats)
– Stagger: 3 float2 to represent 1x3 complex vector

(total 6 floats)

Preliminary Results

• GPU results and CPU reference does not match (yet)

• Flops per site: CM(complex multiplication)=6, CA(complex
addtion)=2
– 3*(3*CM+2*CA)*8*2 + 15*(3*CA) = 1146 flops

• In/Out bytes (12 construct):
– ((8*6*2) + 6 + (8*12*2)) * sizeof(float) = 1176 bytes

• Nvidia GTX 280
– GFLOPS: 106.7
– Bandwidth: 102.0 GB/s

Preliminary Results (single precision
only)

• GPU and CPU results agree

– Fixed small errors in both CPU and GPU code

• Conjugate Gradient (CG) works

– Solves where

– 93 Gflops with GTX280

What’s next

• Optimizing the single precision version in GPU

• Make other flavors work

– 8 reconstruct

– Double precision/half precision, especially double
precision because of next GPU architecture

• Multi-gpu / multi-node implementation for
large lattice size

• Incorporating the code into MILC (?)

Staggered Dslash
CPU data layout

• Each site contains:

• 1 spinor (1x3 complex)

• 4 fatlink (3x3 complex)

• 4 longlink (3x3 complex)

• Sites are divided into even and
odd sites. For site (x,y,z,t)

• (x+y+z+t)%2 == 0  even site

• (x+y+z+t)%2 ==1  odd site

• Total number of sites

• V = dimX * dimY * dimZ * dimT

• Half of total sites Vh = V/2

Fatlink:
Array of
pointers

… … +X

… … +Y

… … +Z

… … +T

Each link contains 18 floats(
3x3x2)

spinor

even site starts odd site starts

… …

6*V floats

Each spinor contains 6 (3*2) floats

Longlink:
Same as fatlink

CPU spinor

even site starts odd site starts

… …

6*V floats

CPU parity
spinor

…
6 *Vh floats

Vh *float2

… … …GPU parity
spinor

float2

One spinor

GPU kernel code
to read spinor

Spinor CPU-> GPU mapping

Y/Z/T link

…Intermediate
data format

… …… …
… …
… …

…

… … … …

+X links

Y/Z/T link
float4Vh *float4

CPU links
layout

GPU links
layout

12-construct

One link

Link CPU-> GPU mapping

GPU kernel code
to read link

Progress in last week

• 8 reconstruct works (for long link), full load for fat
link works
– Long link is loaded using n (n=2 or 3) float4
– Fat link is loaded using m(m=9) float2, no bandwidth

wasted

• Performance (8 reconstruct for long link, full load
with fat link)
– Dslash

• 97 Gflops, bandwidth achieved 97.9 GB/s

– CG
• 86.7 Gflops

optimization using shared memory

• Link is not shared in the Dslash computation
• Each spinor is shared 16 times

– Since the majority of the bandwidth requirement comes from links,
there is an upper limit even we share the spinor perfectly, i.e. each
spinor is only loaded once

– Normal data requirement for each site (12-reconstruct):
• (8*6*2+6)+ 8*18+8*12= 342 bytes

– The “best” spinor shared stragety can reduce that to
• (1*6+6)+8*18+8*12= 252 bytes, leading to 26.3% improvement

– Shared memory size is limited the number of spinor in shared
memory is limited (16KB can hold 682 spinors, approximately 6^4/2)
• Need to rearrange data
• Probably need to use 4-D “tile” to scan through spinors
• Implementation nontrivial

– Low priority task

Progress in last week

• Double/single/half precision all works
– Need to know the range of long link values in

order to implement half precision, now assume [-
1, 1]

– Mixed precision for spinor/gauge should work, not
tested completely yet

– The sloppy precision should also work in CG but
not tested completely yet

– Bug fix: feedback to BU

Double Single half

8-reconstruct 17.4 (35.1) 97.1(97.9) 152.5(76.9)

12-reconstruct 32(71.1) 87.6(97.4) 143.8(80)

Double Single half

8-reconstruct 16.6 87.8 134.7

12-reconstruct 30 78.3 126.5

Converge
steps

63 64 90

Dslash performance (GFLOPS and bandwidth)

CG performance (GFLOPS)

All tests running with 24^3 * 32 lattice with GTX280

CG performance

• (spinor, link, recon, spinor_sloppy, link_sloppy, recon_sloppy): total 108
combinations

• Some typical flavor performance is shown in the table below
– Residual is determined by higher accuracy spinor/link/recon

– Gflops and iterations are determined by sloppy spinor/link/recon

Spinor link recon Spinor
sloppy

Link
sloppy

Recon
sloppy

residual gflops iterarions

double double 12 double double 12 1.88e-12 29.97 63

double double 12 single single 8 1.88e-12 79.58 64

double double 12 half half 8 2.02e-12 116.46 69

single single 8 single single 8 3.29e-07 86.68 64

single single 8 half half 8 3.30e-07 130.61 72

half half 8 half half 8 1.6e-03 134.91 90

CG in MILC

 rsq

 oldrsq

 cg_p

 (where M = + 2 m)

Standard CG procedure from “An Introduction to
the Conjugate Gradient Method. Without the
Agonizing Pain” : A x = b

 - ttt

 resid

 a

 beta

 dest

 src

Interface function to MILC

– b in the @src

– Guess solution in @dest

– Solve

Direct CG performance(I)

• Solve instead of

• Some typical flavor performance is shown in the table below
– Some combination does not converge after maximum(9999) iterations, e.g. (--sprec double --gprec double --recon 12 --

sprec_sloppy half --gprec_sloppy double --recon_sloppy 12) .

– All non-converging runs involve half precision

CPU
precision

Spinor link reco
n

Spinor
sloppy

Link
sloppy

Recon
sloppy

residual gflops iterarions

double

double double 12 double double 12 8.34e-13 29.98 88

double double 12 single single 8 9.96e-13 78.94 88

double double 12 half half 8 1.13e-12 130.04 1808

single single 8 single single 8 1.70e-07 83.60 88

single single 8 half half 8 2.93e-07 131.09 1999

half half 8 half half 8 9.63e-04 131.65 3534

Direct CG performance (II)

• CPU in single precision
– The cpu precision has no effect on the accuracy

CPU
precision

Spinor link recon Spinor
sloppy

Link
sloppy

Recon
sloppy

Residual Gflops Iterarions

single

single single 8 single single 8 4.27e-07 83.66 88

single single 8 half half 8 4.27e-07 130.74 1692

half half 8 half half 8 9.62e-4 131.41 2508

Interface function to MILC

– int ks_congrad_parity_gpu(su3_vector *t_src, su3_vector *t_dest,

quark_invert_control *qic, Real mass,

ferm_links_t *fn)

– Replace the function ks_congrad_parity() in MILC 7.6.3

– The program runs

– Results doe not match with CPU

– Reason:
• the long link is not reconstructed correctly

• How to do it correctly?

Multi mass CG solver

• Standalone test program works for all precisions

– All solution precisions are good

• Mixed precision CG solver

– Only the first solution’s accuracy is good, the rest of
solutions are as good as the sloppy precision

• Interface function to MILC written but untested

– Small test input needed

