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Introduction

 Application: Two Point Angular Correlation Function

 The goal is, given a large set D of unit vectors, to compute a 
histogram of ω(θ) for various values of θ

 To do so, we first compute a large number of dot products and 
create a number of histograms: DD, DR

i
, RR

i
. Each R

i 

represents a large set of random unit vectors. DD is the 
histogram of all dot products of pairs of elements in D, and 
similarly with the others

 Then perform some operations on these histograms to compute 
a histogram of ω(θ)‏

 Jackknife resampling also required
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Overall Code Organization

// pre-compute bin boundaries, binb

load_file(data); // load data from disk  (~100K-1M points on a sphere)

doCompute (data, npd, data, npd, 1, DD, binb, nbins); // compute DD

for (i = 0; i < random_count; i++) // loop through random data files

{

load_file(random[i]); // load data from disk (~100K-1M points on a sphere)

doCompute (random[i], npr[i], random[i], npr[i], 1, RRS, binb, nbins); // compute RR

doCompute (data, npd, random[i], npr[i], 0, DRS, binb, nbins); // compute DR

}

for (k = 0; k < nbins; k++)  {  // compute w

w[k] = (random_count * 2*DD[k] - DRS[k]) / RRS[k] + 1.0;

}



doCompute kernel

void doCompute(struct cartesian *data1, int n1, struct cartesian *data2, int n2, int doSelf, long long 
**data_bins, int nbins, double *binb, int njk) {

if (doSelf) { n2 = n1; data2 = data1; }  // setup pointers for doSelf compute mode

for (i = 0; i < ((doSelf) ? n1-1 : n1); i++) {  // loop over points in the first dataset

double xi = data1[i].x; double yi = data1[i].y; double zi = data1[i].z; int jk = data1[i].jk;

for (j = ((doSelf) ? i+1 : 0); j < n2; j++) {// loop over points in the second dataset

double dot = xi * data2[j].x + yi * data2[j].y + zi * data2[j].z;    // compute dot product

int  indx, k = nbins; 

if (dot >= binb[0]) indx = 0; // data_bins[0] += 1;   // find bin it belongs to 

else { while (dot > binb[k]) k--;  indx = k+1; // data_bins[k+1] += 1; }

for (l = 0; l < njk; l++) // update all samples

if (l != jk) data_bins[l][indx] += 1;

}

}

}
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Applicability to GPUs

 The major parallel aspects of the algorithm are the 
computation of the histogram bin assignments and the 
actual computation of the histograms

 The former is fairly straightforward, as it essentially 
requires taking a very large number of independent dot 
products, and assigning bins based solely on the result of 
said dot products

 The latter can be implemented in a straightforward fashion, 
but achieving good performance requires more careful 
consideration

 Other parallelism exists, such as in looping over all values 
of i. This is best taken advantage of in a multi-GPU system



Implementation Overview

 The algorithm is broken up into two major kernels

 The first takes two sets of 3-vectors, computes the dot 
product of every pair of vectors, and writes histogram 
bin assignments to memory

 The second reads bin assignments from memory and 
constructs a histogram

 This actually uses a third kernel; a helper kernel to 
compile sub-histograms in device memory

 Histogram kernel is only called on elements with the same 
jackknife index; by doing this we can reconstruct the full 
histogram and all jackknife histograms without many 
redundant calls to the histogram kernel



Difficulties

 The first difficulty which arises is the problem of computing 
a bin assignment from the result of a dot product. The 
CPU version implements both linear and binary searches, 
as well as a direct bin computation formula

 Direct computation seems as though it would be best; 
but invocation of logarithm and arccosine render it 
slower than the searches. Between binary and linear, 
linear turns out to be best, likely due to “top” bins 
containing a vast majority of elements. The bias 
reduces the likely number of control paths as well as 
the number of ifs to be executed within a given control 
path.



Difficulties (cont.) 

 The second difficulty is efficiently implementing a 
histogram algorithm.

 Avoiding race conditions in global memory or poor 
global memory bandwidth requires that we construct 
per-block histograms

 Avoiding race conditions within shared memory is only 
possible by creating per-thread histograms in shared 
memory

 Must be careful not to exceed the maximum shared 
memory usage

 Some trickery is required to avoid bank conflicts



Bin Computation Kernel

 This kernel takes in two lists of vectors and computes the 
dot product of every pair of vectors, and then each dot 
product's bin assignment. The bin assignments are then 
written to a grid in device memory

 In this implementation it is assumed that the lists both 
have 16,384 elements, but this is not necessary for the 
algorithm in general

 Each block has 128 threads, and each thread computes 
and outputs 128 bin assignments

 Number of bins is assumed to be small enough that 4 bin 
assignments can be packed in an integer



Bin Computation Kernel (cont) 

 As mentioned previously, a linear search proves to be the 
best method for computing a bin assignment given a dot 
product

 Note that, when computing DD or RR
i
, it suffices to 

compute bin assignments for fewer than half of the pairs

 Doing this introduces branch divergence only in blocks 
for which blockIdx.x = blockIdx.y; the rest must either 
compute all bin assignments or no bin assignments

 This also removes troubling elements on the main 
diagonal, which tend to be incorrectly binned in single 
precision implementations

 Note that we must reserve a histogram bin for “ignored” 
elements



Histogram Kernel

 The histogram kernel (based on an nVidia whitepaper) 
functions by first computing per-thread sub-histograms, 
then compiling those into per-block sub-histograms and 
writing them to global memory. 

 Following this, a small helper kernel compiles the per-block 
sub-histograms into a smaller number of sub-histograms if 
necessary. Compiling the small number of remaining sub-
histograms into a full histogram is left to the CPU

 We could eliminate the helper kernel on Compute 
Capability 1.1 or greater GPUs with the use of atomic 
memory operations, but doing so results in some loss of 
performance



Histogram Kernel (cont) 

 The per-thread sub-histograms must be stored in shared 
memory

 Given that, we want to have a reasonable number of 
threads without putting overly harsh restrictions on the 
number of bins or maximum capacity of a given bin

 Using one byte to represent a histogram bin allows 
each thread to histogram up to 255 elements

 Doing this we can achieve 64 bins with 192 threads 
without over-running shared memory

 64 is plenty for this application. 128 bins could be 
achieved with the same algorithm, but would require a 
reduction to 64 threads



Jackknife Resampling

 Part of the goal of this implementation was to include 
jackknife resampling, in which we compute not only the full 
histogram for ω(θ), but also a number of sub-histograms 
(jackknives) which are to be used in error bounds

 Each element is removed from precisely one jackknife

 The obvious implementation is to add each element to the 
full histogram as well as every jackknife except that which 
it is removed from

 Unfortunately, this requires either far too many bins 
(330 if 30 bins and 10 jackknives are used, as in the 
CPU version) or many redundant calls to the histogram 
kernel



Jackknife Resampling (cont) 

 An efficient solution is to use “inverse” jackknives. The ith 

inverse jackknife is the histogram of elements which are 
removed from the ith jackknife

 The full histogram and every jackknife can be easily 
reconstructed

 Every element goes through the histogram kernel 
precisely once

 May introduce some calls to the histogram kernel which 
are not necessary without jackknife resampling, but the 
histogram kernel does not have much overhead, and 
the number of extra calls is relatively small



Multi-GPU Implementation

 As mentioned earlier, the i-loop can be parallelized to 
allow for easy multi-GPU implementation. This can be 
done with pthreads, but the current implementation uses 
MPI

 Using multiple GPUs in MPI is easy once each process 
has its own GPU

 Unfortunately, assuring this can be tricky. The simplest 
method is to use the same number of GPUs on every 
machine, and ensure that process IDs on a given 
machine are sequential. With these assumptions, one 
can simply use the process ID modulo the number of 
GPUs per machine to assign a unique GPU to each 
process


