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ISL Research 

• Evaluation of emerging computing architectures 

• Reconfigurable computing 

• Many-core (GPU) architecture 

• Heterogeneous clusters 

• Systems software research and development 

• Run-time systems 

• GPU accelerator cluster management 

• Tools and utilities: GPU memory test, power profiling, etc. 

• Application development for emerging computing architectures 

• Computational chemistry (electronic structure, MD) 

• Computational physics (QCD) 

• Cosmology 

• Data mining 



Top 10 from 

TOP-500     Green500 
Rank Site Computer 

1 

National 

Supercomputing Center 

in Tianjin 

Tianhe-1A - NUDT TH MPP, 

X5670 2.93Ghz 6C, NVIDIA 

GPU, FT-1000 8C 

2 
DOE/SC/Oak Ridge 

National Laboratory 

Jaguar - Cray XT5-HE Opteron 

6-core 2.6 GHz 

3 

National 

Supercomputing Centre 

in Shenzhen (NSCS) 

Nebulae - Dawning TC3600 

Blade, Intel X5650, NVIDIA Tesla 

C2050 GPU 

4 
GSIC Center, Tokyo 

Institute of Technology 

TSUBAME 2.0 - HP ProLiant 

SL390s G7 Xeon 6C X5670, 

NVIDIA GPU, Linux/Windows 

5 DOE/SC/LBNL/NERSC 
Hopper - Cray XE6 12-core 2.1 

GHz 

6 

Commissariat a 

l'Energie Atomique 

(CEA) 

Tera-100 - Bull bullx super-node 

S6010/S6030 

7 DOE/NNSA/LANL 

Roadrunner - BladeCenter 

QS22/LS21 Cluster, PowerXCell 

8i 3.2 Ghz / Opteron DC 1.8 

GHz, Voltaire Infiniband 

8 

National Institute for 

Computational 

Sciences/University of 

Tennessee 

Kraken XT5 - Cray XT5-HE 

Opteron 6-core 2.6 GHz 

9 
Forschungszentrum 

Juelich (FZJ) 
JUGENE - Blue Gene/P Solution 

10 DOE/NNSA/LANL/SNL Cielo - Cray XE6 8-core 2.4 GHz 

Rank Site Computer 

1 
IBM Thomas J. Watson 

Research Center 

NNSA/SC Blue Gene/Q 

Prototype 

2 
GSIC Center, Tokyo 

Institute of Technology 

HP ProLiant SL390s G7 Xeon 

6C X5670, NVIDIA GPU, 

Linux/Windows 

3 NCSA 

Hybrid Cluster Core i3 2.93Ghz 

Dual Core, NVIDIA C2050, 

Infiniband 

4 

RIKEN Advanced 

Institute for 

Computational Science 

K computer, SPARC64 VIIIfx 

2.0GHz, Tofu interconnect 

5 
Forschungszentrum 

Juelich (FZJ) 

QPACE SFB TR Cluster, 

PowerXCell 8i, 3.2 GHz, 3D-

Torus 

5 Universitaet Regensburg 

QPACE SFB TR Cluster, 

PowerXCell 8i, 3.2 GHz, 3D-

Torus 

5 Universitaet Wuppertal 

QPACE SFB TR Cluster, 

PowerXCell 8i, 3.2 GHz, 3D-

Torus 

8 Universitaet Frankfurt 

Supermicro Cluster, QC 

Opteron 2.1 GHz, ATI Radeon 

GPU, Infiniband 

9 
Georgia Institute of 

Technology 

HP ProLiant SL390s G7 Xeon 

6C X5660 2.8Ghz, NVIDIA 

Fermi, Infiniband QDR 

10 
National Institute for 

Environmental Studies 

GOSAT Research Computation 

Facility, NVIDIA  



QP: first GPU cluster 

at NCSA 

• 16 HP xw9400 

workstations 

• 2216 AMD Opteron 2.4 

GHz dual socket dual core 

• 8 GB DDR2 

• PCI-E 1.0 

• Infiniband QDR 

• 32 Quadro Plex 

Computing Servers 

• 2 Quadro FX 5600 GPUs 

• 2x1.5 GB GDDR3  

• 2 per host 

 



Lincoln: First GPU-based TeraGrid 

production system 

• Dell PowerEdge 1955 server 

• Intel 64 (Harpertown) 2.33 

GHz dual socket quad-core 

• 16 GB DDR2 

• Infiniband SDR 

• Tesla S1070 1U GPU 

Computing Server 

• 1.3 GHz Tesla T10 processors 

• 4x4 GB GDDR3 SDRAM 

• Cluster 

• Servers: 192 

• Accelerator Units: 96 

Dell PowerEdge 

1955 server 

IB 

Tesla S1070 

T10 T10 

PCIe interface 

DRAM DRAM 

T10 T10 

PCIe interface 

DRAM DRAM 

Dell PowerEdge 

1955 server 

PCIe x8 PCIe x8 

SDR IB SDR IB 



QP follow-up: AC 



AC01-32 nodes 

• HP xw9400 workstation 

• 2216 AMD Opteron 2.4 GHz 

dual socket dual core 

• 8GB DDR2 in ac04-ac32 

• 16GB DDR2 in ac01-03, 

“bigmem” on qsub line 

• PCI-E 1.0 

• Infiniband QDR 

• Tesla S1070 1U GPU 

Computing Server 

• 1.3 GHz Tesla T10 

processors 

• 4x4 GB GDDR3  

• 1 per host 

IB 

Tesla S1070 

T10 T10 

PCIe interface 

DRAM DRAM 

T10 T10 

PCIe interface 

DRAM DRAM 

HP xw9400 workstation 

PCIe x16 PCIe x16 

QDR IB 

Nallatech 

H101 

FPGA 

card 

PCI-X 



Lincoln vs. AC: HPL Benchmark 
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AC34-AC41 nodes 

• Supermicro A+ Server 

• Dual AMD 6 core Istanbul 

• 32 GB DDR2 

• PCI-E 2.0 

• QDR IB (32 Gbit/sec) 

• 3 Internal ATI Radeon 5870 

GPUs 



AC33 node 

Tesla S1070 

T10 T10 

PCIe interface 

DRAM DRAM 

T10 T10 

PCIe interface 

DRAM DRAM 

Core i7 host 

PCIe x16 PCIe x16 

Tesla S1070 

T10 T10 

PCIe interface 

DRAM DRAM 

T10 T10 

PCIe interface 

DRAM DRAM 

PCIe x16 PCIe x16 

•     CPU cores (Intel core i7): 8 

•     Accelerator Units (S1070): 2 

•     Total GPUs: 8 

• Host Memory: 24-32 GB DDR3 

• GPU Memory: 32 GB 

• CPU cores/GPU ratio: 1:2 

• PCI-E 2.0 

• Dual IOH (72 lanes PCI-E) 



AC42 

• TYAN FT72-B7015 

• X5680 Intel Xeon 3.33 

GHz (Westmere-EP) 

dual-sosket hexa-core 

• Tylersburg-36D IOH 

• 24 GB DDR3 

• 8 PCI-E 2.0 ports 

• switched 

• NVIDIA GTX 480 

• 480 cores 

• 1.5 GB GDDR5 
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EcoG: #3 on Green500 list 



EcoG nodes designed 

for low power 

• EVGA P55V 120-LF-

E651-TR Micro ATX Intel 

Motherboard 

• Core i3 530 2.93 GHz 

single-socket dual-core 

• 4 GB DDR3 

• PCIe x16 Gen2 

• QDR Infiniband 

• Tesla C2050 

• 448 cores 

• 3 GB GDDR5 

• Cluster 

• 128 nodes 

PCIe 

interface 
C2050 DRAM 

cpu

0 

cpu

1 

IB 

QDR IB 



GPU Cluster Software 

• Shared system software 

• Torque / Moab 

• ssh 

• Programming tools 

• CUDA C SDK 

• OpenCL SDK 

• PGI+GPU compiler 

• Matlab 

• Intel compiler 

• Other tools 

• mvapich2 mpi (IB) 

• Unique to AC 

• CUDA wrapper 

• memtest 

• Power profiling 

 



Need for GPU-aware cluster software stack 

• Issues unique to compute nodes with GPUs 

• Thread affinity mapping to maximize host-GPU bandwidth 

• CUDA API/driver software bugs (mainly in initial product 

releases) 

• ... 

• Issues unique to the GPU cluster  

• Efficient GPUs sharing in a multi-user environment 

• GPU memory cleanup between different users 

• … 

• Other issues of interest 

• Are GPUs reliable?  (Non-ECC memory in initial products) 

• Are they power-efficient? 

• … 



Effects of NUMA 

• On some systems 

 

access time from CPU00 to 

GPU0  

                     ≠  

access time from CPU10 to 

GPU0 

 

• Latency and achievable 

bandwidth are affected 

 

• Solution: automatic affinity 

mapping for user processes 

depending on the GPUs used 

IOH 

GPU0 

host memory host memory 

IOH 

GPU1 

00 01 
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GPU memory GPU memory 
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PCIe PCIe 



Host to device Bandwidth Comparison 
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Efficient GPU resources sharing 

• In a typical cluster environment, 

user obtains exclusive access to 

the entire node 

• A typical GPU cluster node has 

few (2-4) GPUs 

• But a typical GPU cluster 

application is designed to utilize 

only one GPU per node 
• Giving access to the entire cluster node 

is wasteful if the user only needs one 

GPU 

 

• Solution: allow user to specify how 

many GPUs his application needs 

and fence the remaining GPUs for 

other users 

IOH 

GPU0 

IOH 

GPU1 

00 01 10 11 

GPU memory GPU memory 

GPU0 

GPU memory 

GPU1 

GPU memory 



CUDA/OpenCL Wrapper 

• Basic operation principle: 
• Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL 

functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc. 

• Transparent operation 

• Purpose: 
• Enables controlled GPU device visibility and access, extending resource 

allocation to the workload manager 

• Prove or disprove feature usefulness, with the hope of eventual  uptake or 
reimplementation of proven features by the vendor 

• Provides a platform for rapid implementation and testing of HPC relevant 
features not available in NVIDIA APIs 

• Features: 
• NUMA Affinity mapping 

• Sets thread affinity to CPU core(s) nearest the gpu device 

• Shared host, multi-gpu device fencing 
• Only GPUs allocated by scheduler are visible or accessible to user 

• GPU device numbers are virtualized, with a fixed mapping to a physical device 
per user environment 

• User always sees allocated GPU devices indexed from 0 



CUDA/OpenCL Wrapper 

• Features (cont’d): 

• Device Rotation (deprecated) 

• Virtual to Physical device mapping rotated for each process accessing a 

GPU device 

• Allowed for common execution parameters (e.g. Target gpu0 with 4 

processes, each one gets separate gpu, assuming 4 gpus available) 

• CUDA 2.2 introduced compute-exclusive device mode, which includes 

fallback to next device.  Device rotation feature may no longer needed. 

• Memory Scrubber 

• Independent utility from wrapper, but packaged with it 

• Linux kernel does no management of GPU device memory 

• Must run between user jobs to ensure security between users 

• Availability 

• NCSA/UofI Open Source License 

• https://sourceforge.net/projects/cudawrapper/ 



wrapper_query utility 

• Within any job environment, get details on what the wrapper library is doing 

 

 



showgputime 

• Shows percent time CUDA linked processes utilized GPU 

• Displays last 15 records (showallgputime shows all) 

• Requires support of cuda_wrapper implementation 

 



Are GPUs reliable? 

• No ECC in initial product releases 

• Not a big deal when a GPU is used for what it was indented: 

image rendering 

• Could be a problem when executing a scientific application 

• Can we trust the computed results? 

• How do we know the results are correct? 

 

• Fermi architecture now has ECC memory protection 

• However, two years ago it was not clear if NVIDIA was 

going to add ECC 

• We have done a GPU memory reliability study 



CUDA Memtest 

• Features 

• Full re-implementation of every test included in memtest86 

• Random and fixed test patterns,  error reports, error addresses, test specification 

• Includes additional stress test for software and hardware errors 

• Email notification 

• Usage scenarios 

• Hardware test for defective GPU memory chips 

• CUDA API/driver software bugs detection 

• Hardware test for detecting soft errors due to non-ECC memory 

• Stress test for thermal loading 

• No soft error detected in 2 years x 4 gig of cumulative runtime 

• But several Tesla units in AC and Lincoln clusters were found to have hard 

memory errors (and thus have been replaced) 

• Availability 

• NCSA/UofI Open Source License 

• https://sourceforge.net/projects/cudagpumemtest/ 



GPU Node Pre/Post Allocation Sequence 

• Pre-Job (minimized for rapid device acquisition) 

• Assemble detected device file unless it exists 

• Sanity check results 

• Checkout requested GPU devices from that file 

• Initialize CUDA wrapper shared memory segment with unique key for user 

(allows user to ssh to node outside of job environment and have same gpu 

devices visible) 

• Post-Job 

• Use quick memtest run to verify healthy GPU state 

• If bad state detected, mark node offline if other jobs present on node 

• If no other jobs, reload kernel module to “heal” node (for CUDA driver bug) 

• Run memscrubber utility to clear gpu device memory 

• Notify of any failure events with job details via email 

• Terminate wrapper shared memory segment 

• Check-in GPUs back to global file of detected devices 



Are GPUs power-efficient? 

• GPUs are power-hungry 

• GTX 480 - 250 W 

• C2050 - 238 W 

• But does the increased power consumption justify their 

use? 

• How much power do jobs use? 

• How much do they use for pure CPU jobs vs. GPU-accelerated 

jobs?   

• Do GPUs deliver a hoped-for improvement in power efficiency? 

• How do we measure actual power consumption? 

• How do we characterize power efficiency? 



Power Profiling Tools 

Goals: 

• Accurately record power consumption of GPU and workstation 

(CPU) for performance per watt efficiency comparison 

• Make this data clearly and conveniently presented to application 

users 

• Accomplish this with cost effective hardware 

Solution: 

• Modify inexpensive power meter to add logging capability 

• Integrate monitoring with job management infrastructure 

• Use web interface to present data in multiple forms to user 

 



Power Profiling Hardware 

• Tweet-a-Watt • Wireless receiver (USB) 

• AC01 host and 

associated GPU unit are 

monitored separately by 

two Tweet-a-Watt 

transmitters 

• Measurements are 

reported every 30 

seconds 

• < $100 total parts 



Power Profiling Walk Through 

• Submit job with prescribed resource (powermon) 

• Run application as usual, follow link(s) 



Power Profiling Walk Through 



Power Profiling Walk Through 

• Mouse-over value displays 

• Under curve totals displayed 

• If there is user interest, we may support calls to add custom tags from 

application 



AC GPU Cluster Power Considerations 

State Host Peak 
(Watt) 

Tesla Peak 
(Watt) 

Host  
power factor 

(pf) 

Tesla power 
factor (pf) 

power off 4 10 .19 .31 

start-up 310 182 

pre-GPU use idle 173 178 .98 .96 

after NVIDIA driver module 
unload/reload(1) 

173 178 .98 .96 

after deviceQuery(2) (idle) 173 365 .99 .99 

GPU memtest #10 (stress) 269 745 .99 .99 

after memtest kill (idle) 172 367 .99 .99 

after NVIDIA module 
unload/reload(3) (idle) 

172 367 .99 .99 

VMD Madd 268 598 .99 .99 

NAMD GPU STMV 321 521 .97-1.0 .85-1.0(4) 

NAMD CPU only ApoA1 322 365 .99 .99 

NAMD CPU only STMV 324 365 .99 .99 

1. Kernel module unload/reload does not increase Tesla power 
2. Any access to Tesla (e.g., deviceQuery) results in doubling power consumption after the application exits 

3. Note that second kernel module unload/reload cycle does not return Tesla power to normal, only a complete reboot can 

4. Power factor stays near one except while load transitions. Range varies with consumption swings 



Power Profiling Hardware (2) 

• Improved accuracy 

• Increased 

granularity (every 

.20 seconds) 

• Current flexible 

• Voltage flexible 

• 4 monitored ports 

•  ~$50 total parts 



Application Power profile example 

• No GPU used 

• 240 Watt idle 

• 260 Watt computing on a 

single core 

• Computing on GPU 

• 240 Watt idle 

• 320 Watt computing on a 

single core 



Improvement in Performance-per-watt 

Application t (sec) ta (sec) s p (watt) pa (watt) e 

NAMD 6.6 1.1 6 316 681 2.78 

VMD 1,465.2 57.5 25.5 299 742 10.48 

QMCPACK     61.5 314 853 22.6 

MILC 77,324 3,881 19.9 225 555 8.1 

e = p/pa*s 

p – power consumption of non-accelerated application 

pa – power consumption of accelerated application 

s – achieved speedup 



Speedup-to-Efficiency Correlation 

• The GPU consumes roughly double the CPU power, so 

a 3x GPU is require to break even 
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Applications 

• Applications 

• Cosmology 

• Computational 

chemistry 

• Quantum 

chromodynamics 

• Data mingin 

 

 

 



Lattice QCD: MILC 

• Simulation of the 4D SU(3) lattice gauge 

theory 

• Solve the space-time 4D linear system 

𝑀𝜙 = 𝑏 using CG solver 
• 𝜙𝑖,𝑥 and 𝑏𝑖,𝑥 are complex variables carrying a 

color index 𝑖 = 1,2,3 and a 4D lattice coordinate 

𝑥. 

• 𝑀 = 2𝑚𝑎𝐼 + 𝐷 

• 𝐼 is the identity matrix 

• 2𝑚𝑎 is constant, and  

• matrix 𝐷 (called “Dslash” operator) is given by 

Dx,i;y,j =  U𝑥,𝜇
𝐹 𝑖,𝑗

δy,x+μ − U𝑥−𝜇 ,𝜇
𝐹 † 𝑖,𝑗

δy,x−μ 

4

μ=1

+   U𝑥,𝜇
𝐿 𝑖,𝑗

δy,x+3μ 

4

μ=1

− U𝑥−3𝜇 ,𝜇
𝐿 † 𝑖,𝑗

δy,x−3μ    

Collaboration with Steven Gottlieb from U Indiana, Bloomington 



GPU Implementation strategy: 

optimize for memory bandwidth 

• 4D lattice 

 

 

 

 

 

 

• flop-to-byte ratio of the Dslash 

operation is 1,146/1,560=0.73 

• flop-to-byte ratio supported by 

the C2050 hardware is 

1,030/144=7.5 

• thus, the Dslash operation is 

memory bandwidth-bound 

• spinor data layout 

 

 

 

 

 

 

• link data layout 

... ...

6V floats

first even 
site

first odd site

spinor data 
layout in host 
(CPU) memory

...

... ...

spinor data 
layout in the 
device (GPU) 

memory

float2(½ V + pad) * sizeof(float2) 
bytes

spinor array

...

...

link data 
layout in host 
(CPU) memory

... ...

link data 
layout in the 
device (GPU) 

memory

link arrays

...

...

...

+X

+Y

+Z

+T

18 floats

(½ V + pad) * sizeof(float2) 
bytes

 -Y

 -
Z

 -X  +X

 +
Z

 +
Y

 +T -T

site,
holds spinor

(3x1 complex vector)

links,
4D gauge field of 

3x3 complex matrix



Parallelization strategy: split in T dimension 

• 4D lattice is partitioned in the time 

dimension, each node computes T 

slices 

• Three slices in both forward and 

backward directions are needed 

by the neighbors in order to 

compute new spinors 

 

• dslash kernel is split into 

• interior kernel which computes the 

internal slices (2<t<T-3) of sub-

lattice and the space contribution 

of the boundary sub-lattices, and  

• exterior kernel which computes 

the time dimenstion contribution 

for the boundary sub-lattice. The 

exterior kernel depends on the 

data from the neighbors. 

• The interior kernel and the 

communication of boundary data 

can be overlapped using CUDA 

streams 

 

 



Results for CG solver alone 
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Results for entire application 

(Quantum Electrodynamics) 

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16

ru
n

ti
m

e
 (

s
) 

# of nodes 

Total runtime (sec) 

DP GPU

mixed GPU

DP CPU

0

1

2

3

4

5

6

7

2 4 8 16

s
p

e
e
d

u
p

 (
ti

m
e
s
) 

# of nodes 

Application speedup (times) 

DP GPU

mixed GPU

DP CPU



References 

• GPU clusters 
• V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu, GPU Clusters for High-

Performance Computing, in Proc. IEEE International Conference on Cluster Computing, Workshop on Parallel 

Programming on Accelerator Clusters, 2009. 

• M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, W. Hwu, QP: A Heterogeneous Multi-

Accelerator Cluster, In Proc. 10th LCI International Conference on High-Performance Clustered Computing – LCI'09, 2009. 

• Memory reliability 
• G. Shi, J. Enos, M. Showerman, V. Kindratenko, On testing GPU memory for hard and soft errors, in Proc. Symposium on 

Application Accelerators in High-Performance Computing – SAAHPC'09, 2009 

• Power efficiency 
• J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips, Quantifying the Impact 

of GPUs on Performance and Energy Efficiency in HPC Clusters, In Proc. Work in Progress in Green Computing, 2010. 

• Applications 
• S. Gottlieb, G. Shi, A. Torok, V. Kindratenko, QUDA programming for staggered quarks, In Proc. The XXVIII International 

Symposium on Lattice Field Theory – Lattice'10, 2010. 

• G. Shi, S. Gottlieb, A. Totok, V. Kindratenko, Accelerating Quantum Chromodynamics Calculations with GPUs, In Proc. 

Symposium on Application Accelerators in High-Performance Computing - SAAHPC'10, 2010. 

• A. Titov, V. Kindratenko, I. Ufimtsev, T. Martinez, Generation of Kernels to Calculate Electron Repulsion Integrals of High 

Angular Momentum Functions on GPUs – Preliminary Results, In Proc. Symposium on Application Accelerators in High-

Performance Computing - SAAHPC'10, 2010. 

• G. Shi, I. Ufimtsev, V. Kindratenko, T. Martinez, Direct Self-Consistent Field Computations on GPU Clusters, In Proc. IEEE 

International Parallel and Distributed Processing Symposium – IPDPS, 2010. 

• D. Roeh, V. Kindratenko, R. Brunner, Accelerating Cosmological Data Analysis with Graphics Processors, In Proc. 2nd 

Workshop on General-Purpose Computation on Graphics Processing Units – GPGPU-2, pp. 1-8, 2009. 

 


