
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Evaluation and Exploration of

Next Generation Systems for

Applicability and Performance

Volodymyr Kindratenko

Guochun Shi

Plan of work for Q3

• Within the doc2learn framework

• re-implement image processing algorithm for execution on

the host CPU and GPUs in C, CUDA C, and OpenCL

• Q: Why only image processing?

• A: this is deemed to be the most compute- and data-intensive task

in doc2learn

• study performance

• quantify potential benefits

• develop plans for the follow-up work

doc2learn image characterization algorithm

• Computes probability density function (basically

histogram) for images

• (Optimized) Java implementation

 int red, green, blue;

 byte[] data = ((DataBufferByte)bi.getRaster().getDataBuffer()).getData();

 for (int i =0; i < data.length; i+=3){

 red =(data[i] & 0xff) / size;

 green = (data[i+1] & 0xff)/ size;

 blue = (data[i+2] & 0xff) / size;

 histogram[red][green][blue]++;

 }

Original Java implementation of the computational kernel

actual application time

C implementation for Intel/AMD host

• Java calls C function (using JNI interface)

• C function copies data and does the work

• Java function collects results afterwards

C function executed on the CPU host

Original Java implementation of the computational kernel

Call C function Copy results

CPU time

actual application time

CUDA C/OpenCL Implementation for

NVIDIA and AMD GPUs

• Java calls C function

• C function copies data from Java VM

• C function copies data to the GPU memory and calls a

GPU kernel

• GPU computes

• C function copies data from GPU memory

• Java function collects results afterwards

host to device

data transfer

device to host

data transfer

GPU kernel

execution
Call C function Copy results

GPU time

CPU time

actual application time

Stand-alone test for varying image size

(all overheads included)

0.05

0.5

5

50

500

5000

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192

ex
ec

u
ti

o
n

 t
im

e
(m

s)

image size

Java on 2.8 GHz AMD Istanbul

Java on 3.3 GHz Intel Core i7

C on 2.8 GHz AMD Istanbul

C on Intel 3.3 GHz Core i7

GPU CUDA on NVIDIA GTX 480

GPU OpenCL on NVIDIA GTX 480

GPU OpenCL on ATI Radeon HD5870

Speedups

(with and without overheads)

0

2

4

6

8

10

12

14

16

18

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192

sp
ee

d
u

p

image size

C to Java speedup on Intel 3.3 GHz Core i7 (with JNI overhead)

C to Java speedup on Intel 3.3 GHz Core i7 (without JNI overhead)

NVIDIA GTX 480 GPU to Intel 3.3 GHz Core i7 (C) speedup (with PCIe overhead)

Synthetic dataset test

100x100 pixels images 200x200 pixels images

0

50

100

150

200

250

300

10 30 50 70 90 110 130 150 170 190 210 230 250

ex
ec

u
ti

o
n

 t
im

e
(m

s)

of images per pdf file

JAVA C GPU

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190 210 230 250

e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s)

of images per pdf file

JAVA C GPU

Does it really matter?

(Java only example run)

Entire application profile Data analysis profile

PDF file

parsing

25%

object

extraction

66%

processing time

7%

results storage

1%

miscellaneous

1%

text, 138 ms

image, 274

ms

graphic, 20

ms

Does it really matter?

(Java + C example run)

Entire application profile Data analysis profile

PDF file

parsing

25%

object

extraction

68%

processing time

5%

results storage

1%
miscellaneous

1%

text, 138 ms image, 109

ms

graphic, 20

ms

Does it really matter?

(Java + C + NVIDIA GPU example run)

Entire application profile Data analysis profile

PDF file

parsing

26%

object

extraction

68%

processing time

4%

results storage

1%
miscellaneous

1%

text, 138 ms

image, 73 ms

graphic, 20

ms

Conclusions

• Implications for doc2learn image analysis algorithm
• The image probability density function computation algorithm

implemented in Java in doc2learn software can be accelerated by
a factor of 6x if the entire doc2learn image analysis software is
re-implemented in C,

• Or by a factor of almost 16x if it also uses an NVIDIA GTX 480
GPU.

• Actual GPU speedup largely depends on the image size; for
images less than 512x512 a properly done CPU implementation
will outperform a GPU implementation.

• Calling a GPU-based implementation from the existing
doc2learn Java-based code is still beneficial as it provides up to
4x speedup for sufficiently large images.

• But another factor of 4x speedup can be achieved by porting the
entire image analysis software suite to C and using GPU kernels
within the C-based code. Java is not really a high-performance
platform for this sort of computations.

Conclusions

• Implications for doc2learn application

• Doc2learn execution profile indicates that only about 4% of
the overall execution time for the given pdf file example is
spent on the image processing part. Speeding it up by any
factor will not make much of a difference for the entire
application.
• Said that, GPU acceleration may be still beneficial for pdf files

containing very large images or embedded videos.

• Doc2learn also implements probability density function
computation algorithms for text and vector graphics. These
data types exhibit less regular memory access patterns and
require much large histograms to be stored. Because of
this, they are less suitable for GPU implementation as
compared to image histograms.

Conclusions

• CUDA vs OpenCL

• At this point, CUDA-based implementation outperforms the OpenCL based

implementation, but it does not provide portability across GPU platforms.

• We have not investigated OpenCL implementation for a multi-core

architecture, but from our prior experience we know that platform-specific

tuning will be required to achieve good performance with OpenCL on any

architecture. The OpenCL code written for one architecture will execute on

another architecture, but typically not at its full potential.

• Thus, in light of
• poorer performance of OpenCL implementation

• immaturity of the OpenCL tools

• need for architecture-specific code tuning, and

• overall impact on the doc2learn application performance

• benefits of OpenCL implementation of the probability density function are

minor.

Work in progress

• Develop a stand-alone C test-bed of the image extraction
component of doc2learn

• integrate the developed image probability density function computation
algorithm (both the CPU and GPU implementations)

• investigate how to extend the CPU implementation of the histogram
computation to the multi-core architecture of modern CPUs

• conduct a study how the stand-alone implementation compares to the
original doc2learn Java-based implementation

• use the stand-alone framework to analyze power consumption of the
CPU and GPU implementations

• Investigate other image comparison algorithms and their
suitability for GPU acceleration

• Investigate pros and cons of extending Versus framework
to use GPU-based image processing algorithms

