
Evaluation and Exploration of Next 
Generation Systems for Applicability 

and Performance 

Volodymyr Kindratenko 
Guochun Shi 

 



Plan of work for Q4 

• Develop a stand-alone C test-bed of the image extraction 
component of doc2learn 
– integrate the developed image probability density function 

computation algorithm (both the CPU and GPU implementations) 
– investigate how to extend the CPU implementation of the histogram 

computation to the multi-core architecture of modern CPUs 
– conduct a study how the stand-alone implementation compares to the 

original doc2learn Java-based implementation 
– use the stand-alone framework to analyze power consumption of the 

CPU and GPU implementations 
• Integrate new power monitoring hardware 

• Investigate other image comparison algorithms and their suitability 
for GPU acceleration 

• Investigate pros and cons of extending Versus framework to use 
GPU-based image processing algorithms 



Stand-alone C test-bed of the image 
extraction component of doc2learn 

• Integrate the developed image probability density 
function computation algorithm (both the CPU and 
GPU implementations) 
 

• Based on xpdf-3.02, with the following modifications 
– Replaced method ImageOutputDev::drawImage with the 

code for computing image histogram 
• Computes histogram of an image and stores it in a file 

– Added new method ImageStream::getLine to extract one 
image row directly into user-supplied buffer 
• Eliminates a memcopy 

• No GPU code has been integrated yet 



Stand-alone C test-bed of the image 
extraction component of doc2learn 

• Investigate how to extend the CPU 
implementation of the histogram computation 
to the multi-core architecture of modern CPUs 

 

• Not done yet 



Stand-alone C test-bed of the image 
extraction component of doc2learn 

• Conduct a study how the stand-alone 
implementation compares to the original 
doc2learn Java-based implementation 

 

• Work in progress 



Effects of image size 

• 50x50 

• /tmp 



Effects of image size 

• 100x100 

• /tmp 



Effects of image size 

• 150x150 

• /tmp 



Effects of image size 

• 200x200 

• /tmp 



Effects of image size 

• 500x500 

• /tmp 



Effects of image size 

• 1Kx1K 

• /tmp 



Effects of image size 

• 2Kx2K 

• /tmp 



Effects of file system type 

• nfs 

• 200x200 



Effects of file system type 

• /tmp 

• 200x200 



Effects of file system type 

• ramdisk 

• 200x200 



Comparison with doc2learn 

JAVA



Comparison with doc2learn 

JAVA C



Observations/Conclusions 

• Stand-alone C-based implementation is substantially faster than the Java-
based framework 
– For small images, the entire application runs faster than Java-based image 

analysis part of doc2learn (not even including file I/O) 
– For larger images, Java-based image analysis code is still substantially slower 

• Reading images from disk takes an order of magnitude more time than to 
compute histograms 
– Overall application speedup of no more than 10% can be achieved by 

speeding up the image processing time 
– Does a 10% speedup really matter? 

 
• Suggestions for improving doc2learn performance without GPUs: 

– Save all histograms for a given PDF file into just one output file 
• Otherwise saving computed histograms to disk takes more time than to compute them 
• fopen/fclose are very expensive 

– Use ramdisk to temporary store PDF files while processing them 
• Eliminates OS jitter due to disk access 



Stand-alone C test-bed of the image 
extraction component of doc2learn 

• Use the stand-alone framework to analyze 
power consumption of the CPU and GPU 
implementations 
– Integrate new power monitoring hardware 

 

• Based on the new power monitoring hardware 
developed at ISL by Craig Steffen 
– We wrote data acquisition and analysis scripts 

necessary to collect and visualize power levels 



Power consumption measurements 

• /tmp 

• 50-1K 

• idle 

– ~247 watt 

• computing 

– ~265 watt 

• ∆ ~18 watt 



Power consumption measurements 

• /tmp 

• 50-2K 

• “idle” 

– ~418 watt 

• computing 

– ~432 watt 

• ∆ ~14 watt 

 



Doc2learn power efficiency analysis 

• 2Kx2K images, 250 image count 

200

220

240

260

280

300

320

340

360

0 50 100 150 200 250 300

p
o

w
e

r 
(w

at
t)

 

time (sec) 

Java

C

GPU



Doc2learn power efficiency analysis 

Image size/ 
count 

Image analysis only Image extraction and analysis 
1000x1000/250 2000x2000/250 1000x1000/250 2000x2000/250 

t (sec) 2.749 10.322 25.684 107.999 

tc (sec) 1.131 4.575 24.438 102.682 

tg (sec) 0.950 3.763 24.327 98.474 

p (watt) 260 260 260 260 

pc (watt) 260 260 260 260 

pg (watt) 325 325 325 325 

sc=tc/t 2.43 2.26 1.05 1.05 

sg=tg/t 2.89 2.74 1.06 1.10 

ec=p/pc*sc 2.43 2.26 1.05 1.05 

eg=p/pg*sg 2.31 2.19 0.84 0.88 

If we do not take into account image extraction time (which is huge compared to the 
image processing time), GPU-based implementation is more power-efficient. 
 
If we do take into account the image extraction time, GPU-based implementation 
becomes power-inefficient! 



Other topics 

• Investigate other image comparison 
algorithms and their suitability for GPU 
acceleration 
– Work in progress 

 

• Investigate pros and cons of extending Versus 
framework to use GPU-based image 
processing algorithms 
– Work in progress 



Future work 

• Finish image analysis work 
– Perform final set of measurements 

– Write report 

• New directions (after phone calls with Mark 
Conrad and Richard Lopez) 
– Data compression on GPUs 

– Computing file checksums on GPUs 

– Investigating applicability of database appliances for 
iRODS 
• XtremeData's dbX Data Warehousing Appliance 


