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A.  Summary  

 

- In the area of Evaluation and Exploration of Next Generation Systems for Applicability and 

Performance, over the period of 01/01/11 through 03/31/11 the NCSA Innovative Systems Lab 

team investigated the suitability of GPU technology for two important classes of data-intensive 

applications: computation of checksums used for data integrity verification, encryption, and data 

comparison, and lossless data compression.  Our findings indicate that while these algorithms 

can benefit from GPU acceleration to some degree, their practical use on GPUs is limited due to 

the PCIe bandwidth bottleneck between the host and the GPU.  Host memory to CPU bandwidth 

is substantially higher than host memory to GPU card, thus putting effective limit on 

performance around 6 GB/s.  We also integrated GPU implementation of Scale-Invariant Feature 

Transformation (SIFT) algorithm with doc2learn and Versus software and demonstrated its 

performance for image comparison within these two frameworks. 

 

B.  Evaluation and Exploration of Next Generation Systems for Applicability 

and Performance (Volodymyr Kindratenko, Guochun Shi) 

1 Scale-Invariant Feature Transformation 

1.1 Summary 

Scale-Invariant Feature Transformation (SIFT) is a computer vision algorithm that detects 

distinctive image features for image matching and recognition. The features are supposed to be 

invariant to image scaling, rotation, illumination changes, 3D viewpoint change and other affine 

distortions.  The features from an image can be used to compare against those of a sample image 

and get the similarity estimate of the images. 

We have integrated a GPU-based implementation of SIFT algorithm with doc2learn pdf file 

comparison software as a replacement for the probability density function based image 

comparison algorithm previously used in doc2learn.  This allows us to compare images 

embedded in pdf files based on their actual content rather than on the color probability density 

function. 

We also have integrated a GPU-based implementation of SIFT algorithm with Versus 

framework
1
 developed by the Image Spatial Data Analysis Group at NCSA. 

There are several SIFT implementations available including SIFT++, Oregon state’s SIFT 

implementation
3
, and SIFT GPU from UNC. In this study, we used the SIFT GPU 

implementation from UNC
2
 since both feature extraction and feature matching components of 

the algorithm are implemented in CUDA C providing speedup compared to the reference CPU 

implementation. 

                                                 
1
 http://isda.ncsa.illinois.edu/versus/

 

2
 http://www.cs.unc.edu/~ccwu/siftgpu/

 

3
http://blogs.oregonstate.edu/hess/code/sift/

 

http://isda.ncsa.illinois.edu/versus/
http://www.cs.unc.edu/~ccwu/siftgpu/
http://blogs.oregonstate.edu/hess/code/sift/
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1.2 SIFT algorithm performance study 

For this comparison, we choose Oregon State’s CPU implementation as the reference 

implementation and UNC implementation as GPU-accelerated implementation and we study 

how the feature extraction’s performance varies as a function of image size. The host CPU we 

use is 2.67 GHz Intel Xeon and the GPU we use is Nvidia’s GTX480, installed in the same CPU 

host using PCIe interface. In the CPU sift implementation, we use the siftfeat program that 

provides the option to extract features. In the GPU implementation, we modified the sample 

program SimpleSift to do feature extraction only. The run time is measured using the time utility 

invoked from the command line. Because the GPU always have a startup overhead time, which 

can be invoked by calling cudaFree(0) at the beginning of the program, this startup time is 

subtracted in the final GPU run time as it is a one-time cost. The CPU/GPU run time with 

different image sizes is shown in Figure 1.  For small images, CPU runs faster than GPU. 

However, as the image size increases, the CPU run time increases substantially while the GPU 

run time stays relatively stable. With image size 2592x1936, the GPU implementation runs 

almost 4x faster than CPU implementation. 

 

Figure 1. Performance comparison between CPU and GPU implementation of SIFT algorithm. 

 

1.3 SIFT integration with Versus 

Versus is a framework currently under development in the Image Spatial Data Analysis Group at 

NCSA to facilitate the comparison of digital objects. The framework exposes a JAVA-based API 

for extending its functionality by adding new comparison methods.  Figure 2 gives an overview 

of the API. 

We implemented four new classes on top of the four interfaces, Adapter, Extractor, Measure, and 

Descriptor, in order to integrate SIFT GPU program with Versus. 
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 Class SiftGpuAdaper implements Adapter interface and the method getBytes() 

calls through Java Native Interface (JNI) SiftGpu library to load the image file data 

into memory. 

 Class SiftGpuExtractor implement the interface Extractor and the method 

extract() calls through JNI SiftGpu library to compute all the features in the image 

and return the feature data back. 

 All feature data is stored in class SiftGpuFeature, which implements the interface 

Descriptor. 

 Class SiftGpuMeasure implements the interface Measure and the method 

compare() calls through JNI SiftGpu library to invoke the comparison performed on 

the GPU to compute matching features. 

 

Figure 2. Versus API overview. 

 

Based on the matching features and the total number of features in both images, one can compute 

a similarity number for the two images. The SiftGpu library code is modified accordingly to 

provide the interface to the JNI calls. Other auxiliary methods in the four classes such as 

getName()are also implemented to make the SiftComparison method work seamlessly within 

the Versus framework.  Figure3 demonstrates the configuration process for selecting SiftGpu 

library methods within Versus framework. 
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Figure 3a. Selection of SiftGpuAdapter. 

 

 

 

Figure 3b. Selection of SiftGpuExtractor. 

 

Figure 3c. Selection of SiftGpuFeature. 
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1.4 Examples 

The examples below demonstrate the use of SIFT integrated with Versus using few image pairs.  

In the current implementation, a number ranging from 0 to 1 is used to indicate the degree of 

similarity between pairs of images. 

 

 

 

Figure 4.  Rotation. Similarity=0.96 

 

 

 

Figure 5.  Color transformation. Similarity=0.80 
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Figure 6.  Image subsection comparison. Similarity=0.45 

 

 

Figure 7. Different light exposure. Similarity=0.43 

 

 

 

Figure 8. Different angle. Similarity=0.12 
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Figure 9. Different seasons. Similarity=0.0012 

 

 

 

There is current one limitation when using SiftGpu library within Versus framework. The 

SiftGpu code has a default limit of 4096 features used for comparison. While there is an API to 

change the default behavior, it appears to be not fully functional as of time of writing this report. 

Manually changing the MACRO definition in the code caused the “unspecified launch error” on 

the GPU, which is a likely indication of oversubscription of GPU resources, e.g., the shared 

memory in this case. Further testing and code improvement is needed. 

1.5 SIFT integration with doc2learn 

The integration of SiftGpu with doc2learn follows the same approach we used when integrating 

GPU-based doc2learn image histogram computation code. The image data, width and height are 

passed to SiftGpu library through JNI calls in the histogram computation function in the Java 

code and the Sift features are computed by the SiftGpu library and saved in files. Normally one 

image has hundreds or thousands of features where each feature is represented by 4 floating 

values, representing location (x, y), scale and orientation, and 128 integers describing the feature. 

These features can later on be used for image comparison. 

2 Lossless data compression 

Variety of lossless data compression techniques exist, including 

 Dictionary-based encoders (Lempel-Ziv family of algorithms) that replace input strings 
with pointers to a dictionary data structure updated by the encoder. 

 Variable-length entropy encoders, such as Huffman and arithmetic coding, that assign 
prefix codes to each input symbol based on its statistical frequency of occurrence. 

 Run-length coders that store repeated values as a single instance and a count. 

Best lossless data compression techniques work by using probabilistic models in which 

predictions are coupled to an arithmetic coding algorithm.  
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To date, no serious prior work has been done on general-purpose lossless data compression on 

GPUs.  The closest is 2009 students work from Stanford University
3
. But there is some good 

prior work for floating-point data compression
4
.  The floating point data compression idea is 

based on the suppression of leading zeros in the residuals between the input values and their 

predicted values.  This technique however is not suitable for general-purpose use and its 

performance is limited by the PCIe bus bandwidth (~6 GB/sec). 

We have conducted analysis of data compression techniques with regards to their suitability for 

GPU implementation.  In the process of doing so, we re-implemented parts of the Lempel-Ziv 

(LZ) compression method which is at the core of the many dictionary-based encoders.  This 

implementation was necessary to understand the data flow through the algorithm. 

Our conclusion is that existing general-purpose lossless data compressor algorithms are not 

amenable for an efficient GPU implementation due to: 

 Serial nature of the algorithms 
o Parallelization via data partitioning is possible, but not sufficient to utilize 

massive parallelization of GPUs 
o Control instructions abundant nature of the algorithms 
o Irregular data access patterns 

 PCIe bandwidth 
o Currently peak at 8 GB/s for PCIe gen. 2 x16 
o Compared to 10-17 GB/s for DDR3 memory modules 

We have not yet found a general-purpose lossless data compression algorithm amenable for an 

efficient GPU implementation. 

3 Check sums 

National Institute of Standards and Technology (NIST) announced a public competition on Nov. 

2, 2007 to develop a new cryptographic hash algorithm, in response to the recent development of 

cryptanalysis. The winner will be named “SHA-3” and will subject to a Federal Information 

Processing Standard (FIPS).  In Dec 2008, 51 first round candidates were announced and the 

number narrowed down to 14 in July 2009 in the second round. In December 2010 the final five 

candidates were selected by NIST to enter the third (and final) round of SHA-3 competition and 

the winner is expected to be announced in 2012. 

The candidates are reviewed based on security, cost and algorithmic and implementation 

characteristics. The GPU implementation of these algorithms is of great interests as GPGPU 

gains momentum in high performance computing. The first round candidate md6 has been 

implemented in GPU and used in fast file matching
5
. Bos, etc. has evaluated the performance of 

all of the second round candidates (BLAKE, Grøstl, JH, Keccak, and Skein) on the Nvidia GPU 

                                                 
3
 L. Wu, M. Storus, D. Cross, CUDA Compression Project, 

http://ppl.stanford.edu/cs315a/pub/Main/CS315a/CUDA_Compression_Final_Report.pdf 

4
 M. O’Neil, M. Burtscher, Floating-Point Data Compression at 75 Gb/s on a GPU, GPGPU-4, Mar 05-05 2011. 

5
 Deephan Mohan, John Cavazos, Faster File Matching Using GPGPUs, SAAHPC2010 
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platform and implemented most of them
6
. Since cryptographic hash function usually contains 

only bits operations, GPUs can achieve very high performance given enough parallelism. 

However, since the original message data is in host memory and has to be copied to GPU 

through PCIe, the best performance cannot exceed the PCIe bandwidth (~6 GB/s). Indeed, in 

Bos’s GPU implementations, the best possible performance is achieved with algorithms 

“BLAKE-32” and “BMW-256” algorithms, both being able to compute 36.8 Giga bits per 

second or 4.6 GB/s, approaching the PCIe limit. 

4 Future work 

We have planned to evaluate performance of XtremeData database appliance
7
 for data analysis 

on the datasets relevant to NARA.  However, during this reporting period we were unable to 

obtain access to the hardware.  XtremeData finally installed the data analytics appliance, called 

dbx, on March 30 and we plan to conduct an in-depth evaluation of this technology in the 

upcoming month. 

                                                 
6
 Joppe W. Bos and Deian Stefan. Performance analysis of the SHA-3 candidates on exotic multi-core architectures. 

CHES 2010 

7
 http://www.xtremedata.com/-support/downloads/category/14-dbx 


