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A.  Summary  

 

- In the area of Evaluation and Exploration of Next Generation Systems for Applicability and 

Performance, over the period of 07/01/10 through 06/30/11 the NCSA Innovative Systems Lab 

team conducted investigation of the applicability of GPU-based acceleration technology for data-

oriented applications. We have ported image characterization algorithm implemented in 

doc2learn application to GPUs using both CUDA C targeting NVIDIA GPUs and OpenCL 

targeting NVIDIA and AMD GPU architectures. We have also implemented this algorithm as a 

stand-alone application and used all implementations to perform an energy efficiency study on 

host CPU and GPU platforms and demonstrated that a GPU-based implementation is not power-

efficient. We integrated GPU implementation of Scale-Invariant Feature Transformation (SIFT) 

algorithm with doc2learn and Versus software and demonstrated its performance for image 

comparison within these two frameworks. We analyzed two classes of data-intensive 

applications: computation of checksums used for data integrity verification, encryption, and data 

comparison, and lossless data compression and concluded that while these algorithms can 

benefit from GPU acceleration to some degree, their practical use on GPUs is limited due to the 

PCIe bandwidth bottleneck between the host and the GPU. We conducted XtremeData dbx data 

analytics appliance evaluation using NARA-ICAT database and concluded that the system is 

capable of executing complex queries an order of magnitude faster than a traditional database 

engine. 

 

B.  Evaluation and Exploration of Next Generation Systems for Applicability 

and Performance (Volodymyr Kindratenko, Guochun Shi) 
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1 Summary 

Over the period of 7/1/10 through 9/30/10, we have ported image characterization algorithm 

implemented in doc2learn application to the Graphics Processing Unit (GPU) platform using 

both CUDA C targeting NVIDIA GPUs and OpenCL targeting NVIDIA and AMD GPU 

architectures.  We also implemented doc2learn image analysis algorithm in C targeting 

microprocessor architecture.  Our conclusion is that doc2learn image processing part can be 

accelerated up to 4 times using NVIDIA GTX 480 GPU, but 1) the speedup depends on the 

image size and 2) other parts of doc2lear application dominate the execution time. 

Over the period of 10/1/10 through 12/30/10, we focused on replacing the Java-based doc2learn 

framework with a light-weight C-based implementation.  Specifically, we used xpdf-3.02 library 

and modified one of its applications, pdfimage, to compute image histograms identical to the 

histograms computed by the original doc2learn Java code.  We used the software developed over 

two quarters to perform an energy efficiency study on the host CPU and GPU platforms and 

demonstrated that a GPU-based implementation is not power-efficient. 

Over the period of 01/01/11 through 03/31/11, we have integrated a GPU-based implementation 

of Scale-Invariant Feature Transformation (SIFT) algorithm for detecting distinctive image 

features for image matching and recognition with doc2learn pdf file comparison software as a 
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replacement for the probability density function based image comparison algorithm previously 

used in doc2learn.  This allows us to compare images embedded in pdf files based on their actual 

content rather than on the color probability density function. We also have integrated a GPU-

based implementation of SIFT algorithm with Versus framework developed by the Image Spatial 

Data Analysis Group at NCSA. 

Over the period of 04/01/11 through 06/30/11, we performed XtremeData dbx data analytics 

appliance evaluation.  We used a database supplied by NARA consisting of a collection of 

approximately 79 million records.  We also used a database with randomly generated records, 

ranging from 1 million to 1 billion records.  We measured database deployment time as well as 

the time to run complex queries involving joining tables.  We compared our measurements with 

the results supplied by NARA. 

2 XtremeData dbX data analytics appliance 

2.1 Hardware 

The system that was made available to use by XtremeData is referred to as dbX Foundation 

configuration
1
.  It consists of two rack-mounted physical nodes connected via a direct InfiniBand 

(IB) link (Figure 1).  One node is referred to as head node; the other node is called data node.  

Both nodes include two six-core AMD Opteron 2431 processors, 32 GB of RAM, and ~12 TB of 

storage.  Number of data nodes can be increased up to 1024. 

 

  

Figure 1. XtremeData data analytics appliance. 

 

The head node runs “front-end” processes, such as administrator, user sessions, SQL, compiler, 

optimizer, plan generator, etc.  The data node performs “back-end” query execution and handles 

all external I/O, such as indexed and sequential scan of disks and inter-node communications. 

2.2 Software 

The system runs Linux OS, version 2.6.18-194.11.4.el5.  The database engine is a modified 

version of PostgreSQL.  In addition to the database engine, a command-line based and web-

based database administration interfaces are provided (Figure 2). 

                                                 
1
 DBX product brief, http://www.xtremedata.com/images/pdf/DBX_2011_Product_Brief_Final.pdf 
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Figure 2. XtremeData data analytics appliance web-based administration tool. 

3 Test datasets 

In this study, we used two databases: NARA-ICAT database provided by NARA and a custom 

database consisting of semi-random records stored in two tables modeled after the two main 

tables in the NARA-ICAT database. 

NARA-ICAT database consists of 32 tables, but only two of them, r_coll_main and r_data_main, 

carry principal data.  Tables I and II provide characteristics of these two database tables. 

Table Ia. r_coll_main properties 

Primary Key NONE Tablespace pg_default 

Has Indexes Yes Has Rules No 

Has Triggers No Estimated Pages 0 

Is Read-Only No Is Analyzed No 

Estimated Rows Unknown Max Row Size 10,862 

Is Partitioned No Partition Type Not Applicable 

Partitions 0 Scatter Method ROUND ROBIN 

 



   4 

Table Ib. r_coll_main columns 

Name Data Type Position Is Not NULL Modifiers 

coll_id bigint 1 Yes  

parent_coll_name character varying(2000) 2 Yes  

coll_name character varying(2000) 3 Yes  

coll_owner_name character varying(250) 4 Yes  

coll_owner_zone character varying(250) 5 Yes  

coll_map_id bigint 6 No 0 

coll_inheritance character varying(1000) 7 No  

coll_type character varying(250) 8 No '0'::character varying 

coll_info1 character varying(2000) 9 No '0'::character varying 

coll_info2 character varying(2000) 10 No '0'::character varying 

coll_expiry_ts character varying(32) 11 No  

r_comment character varying(1000) 12 No  

create_ts character varying(32) 13 No  

modify_ts character varying(32) 14 No  

 

Table Ic. r_coll_main indexes 

Name Is Primary Key Is Unique Index Columns 

idx_coll_main2 No Yes (parent_coll_name,coll_name) 

idx_coll_main2_xdglobal No Yes (parent_coll_name,coll_name) 

idx_coll_main3 No Yes (coll_name) 

idx_coll_main3_xdglobal No Yes (coll_name) 

idx_coll_main1 No No (coll_id) 

 

Table IIa. r_data_main properties 

Primary Key NONE Tablespace pg_default 

Has Indexes Yes Has Rules No 

Has Triggers No Estimated Pages 0 

Is Read-Only No Is Analyzed No 

Estimated Rows Unknown Max Row Size 6,918 

Is Partitioned No Partition Type Not Applicable 

Partitions 0 Scatter Method ROUND ROBIN 

 

Table IIb. r_data_main columns 

Name Data Type Position Is Not NULL Modifiers 

data_id bigint 1 Yes  

coll_id bigint 2 Yes  

data_name character varying(1000) 3 Yes  

data_repl_num integer 4 Yes  

data_version character varying(250) 5 No '0'::character varying 

data_type_name character varying(250) 6 Yes  

data_size bigint 7 Yes  

resc_group_name character varying(250) 8 No  

resc_name character varying(250) 9 Yes  

data_path character varying(2000) 10 Yes  
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data_owner_name character varying(250) 11 Yes  

data_owner_zone character varying(250) 12 Yes  

data_is_dirty integer 13 No 0 

data_status character varying(250) 14 No  

data_checksum character varying(1000) 15 No  

data_expiry_ts character varying(32) 16 No  

data_map_id bigint 17 No 0 

r_comment character varying(1000) 18 No  

create_ts character varying(32) 19 No  

modify_ts character varying(32) 20 No  

data_mode character varying(32) 21 No  

 

Table IIc. r_data_main indexes 

Name Is Primary 

Key 

Is 

Unique 

Index Columns 

idx_data_main2 No Yes (coll_id,data_name,data_repl_num,data_version) 

idx_data_main2_xdglobal No Yes (coll_id,data_name,data_repl_num,data_version) 

idx_data_main1 No No (data_id) 

idx_data_main3 No No (coll_id) 

idx_data_main4 No No (data_name) 

idx_data_main5 No No (data_repl_num) 

3.1 Database deployment options 

A dbX database can be deployed on a user-specified subset of data nodes.  We evaluated two 

deployment configurations: 

 Configuration A: Single virtual node executed on the head node 

 Configuration B: Four virtual nodes; two of which are executed on the head node and 
two on the data nodes. 

3.2 NARA-ICAT deployment time 

Timing measurements performed in this study have been collected using one the following 

procedures, depending on which procedure is more convenient for a given operation: 

 Time measurement method 1: Using time Linux utility, i.e.,  
o time xdusql sql nara0 NARA-ICAT < query.sql 

 Time measurement method 2: Using sql timing utility, i.e., 
o xdusql sql nara0 NARA-ICAT; \timing on 

NARA-ICAT database was deployed on dbX system by restoring a database dump provided by 

NARA.  Table III contains timing for different stages of the database deployment on the two 

deployment configurations. 

As seen from Table III, data ingestion time remains unchanged for either of the two 

configurations.  Since there is a single file that is feed into the database, the data ingestion time 

depends on the speed with which this file can be read from the disk. 
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Time to index the tables is decreased by a factor of ~3.3 when the database is spread across four 

virtual nodes instantiated on the two physical nodes instead of just one virtual node.  And the 

analysis time is decreased by a factor of ~2. 

 

Table III.  Database setup time. 

Deployment configuration A: Single virtual node (one process) 

 Create tables Load data Analysis Indexing 

real 0m2.351s 20m43.036s 6m11.476s 417m51.229s 

user 0m0.017s 11m0.309s 0m0.009s 0m0.011s 

sys 0m0.013s 8m1.247s 0m0.021s 0m0.020s 

Deployment configuration B: Four virtual nodes 

 Create tables Load data Analysis Indexing 

real 0m2.239s 20m33.278s 3m31.286s 127m14.555s 

user 0m0.012s 11m12.962s 0m0.014s 0m0.011s 

sys 0m0.019s 8m0.183s 0m0.020s 0m0.020s 

4 Performance evaluation 

4.1 Using NARA-ICAT database 

In this study, we run queries against two databases deployed using deployment configuration A 

or B.  In the tables below, timing for these two configurations is referred to as TimeA 

(Configuration A: Single virtual node executed on the head node) and TimeB (Configuration B: 

Four virtual nodes; two of which are executed on the head node and two on the data nodes.).  

When available, we also provide timing for the same queries measured and provided by NARA 

on IRODS database.  This timing measurement is referred to as TimeN. 

Table IV.  Count number of collections in the archive. 

Query1 SELECT COUNT(coll_name) FROM r_coll_main WHERE coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives%'; 

Result   count   

1467811 

TimeA real    0m4.237s TimeB real    0m2.697s TimeN N/A 

Query2 SELECT COUNT(coll_name) FROM r_coll_main WHERE coll_name LIKE '/nara-

cpk/home/maconrad%'; 
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Result   count   

1637884 

TimeA real    0m4.065s TimeB real    0m2.684s TimeN N/A 

 

Table V.  Count number of files in collections. 

Query3 SELECT COUNT(data_name) FROM r_data_main, r_coll_main WHERE 

r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives%'; 

Result   count   

61218583 

TimeA  TimeB real    1m30.698s TimeN real    2m59.244s 

Query4 SELECT COUNT(data_name) FROM r_coll_main WHERE coll_name LIKE '/nara-

cpk/home/maconrad%'; 

Result   count   

79097137 

TimeA  TimeB real    1m36.764s TimeN real    3m8.671s 

 

Table VI.  Count number of files and their combined size in a given collection. 

Query5 SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 266 - Records of the 

Securities and Exchange Commission%'; 

Result   count  |      sum       

 8603389 | 1491679205975 

TimeA real    1m25.817s TimeB real    1m0.610s TimeN real    2m27.993s 

Query6 SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 560 - Records of the 

Transportation Security Administration%'; 

Result   count  |      sum       

   273   | 131450733 

TimeA real    1m0.472s TimeB real    0m43.799s TimeN real    0m1.405s 
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Query7 SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 034 - Records of the 

Federal Deposit Insurance Corporation%'; 

Result   count  |      sum       

     619 | 22008579 

TimeA real    1m5.162s TimeB real    0m44.257s TimeN real    0m1.596s 

Query8 SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 563 - General Records 

of the Department of Homeland Security%'; 

Result   count  |      sum       

   299   | 8860332 

TimeA real    1m0.660s TimeB real    0m42.703s TimeN real    0m1.463s 

Query9 SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records%'; 

Result   count  |      sum       

61211325 | 14696973201297 

TimeA real    2m1.075s TimeB real    1m5.771s TimeN real    3m26.528s 

QueryA SELECT COUNT(data_name), SUM(data_size) FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad%'; 

Result   count  |      sum       

74829764 | 45431130232531 

TimeA real    2m9.477s TimeB real    1m11.844s TimeN real    3m50.299s 

 

Table VII.  Find if a particular file exists in the collection. 

QueryB SELECT data_name, coll_name, data_path FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND data_name LIKE 

'seastar.jpg'; 

Result   data_name    |      coll_name      |   data_path   
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(3 rows, Query Total: 3) 

seastar.jpg | /nara-cpk/home/maconrad/National_Archives/Federal_Records/RG 079 - Records of the 

National Park Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images | 

/irodsvault/WV/home/maconrad/National_Archives/Federal_Records/RG 079 - Records of the National 

Park Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images/seastar.jpg 

 seastar.jpg | /nara-cpk/home/maconrad/National_Archives/Federal_Records/RG 079 - Records of the 

National Park Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images | 

/irodsvault/home/maconrad/National_Archives/Federal_Records/RG 079 - Records of the National Park 

Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images/seastar.jpg 

 seastar.jpg | /nara-cpk/home/maconrad/National_Archives/Federal_Records/RG 079 - Records of the 

National Park Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images | 

/irodsvault/maconrad.nara/National Archives/Federal Records/RG 079 - Records of the National Park 

Service/Acadia National Park Photo Galleries/www.nps.gov/acad/kids/images/seastar.jpg 

TimeA real    1m2.241s TimeB real    0m33.328s TimeN real    0m0.179s 

QueryC SELECT data_name, coll_name, data_path FROM r_data_main, r_coll_main 

WHERE r_data_main.coll_id=r_coll_main.coll_id AND data_name LIKE 

'nonexisting.file'; 

Result   data_name    |      coll_name      |   data_path   

(0 rows, Query Total: 0) 

TimeA real    1m4.783s TimeB real    0m30.388s TimeN real    0m1.128s 

 

Table VIII.  Queries involving r_objt_access table. 

QueryD SELECT COUNT(object_id) FROM r_objt_access WHERE object_id IN (SELECT 

data_id FROM r_data_main WHERE 

data_path='/irodsvault/WV/home/maconrad/National_Archives/Federal_Records/RG 

079 - Records of the National Park Service/Acadia National Park Photo 

Galleries/www.nps.gov/acad/kids/images/seastar.jpg'); 

Result count  

11 

TimeA Time: 115.961 s TimeB Time: 74.402 s TimeN Time: 81.092 s 

QueryE SELECT COUNT(object_id) FROM r_objt_access WHERE object_id IN (SELECT 

data_id FROM r_data_main, r_coll_main WHERE 

r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 560 - Records of the 

Transportation Security Administration%'); 

Result count  

  1001 

TimeA Time: 107.533 s TimeB Time: 82.795 s TimeN Time: 531.095 s 
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QueryF SELECT COUNT(object_id) FROM r_objt_access WHERE object_id IN (SELECT 

data_id FROM r_data_main, r_coll_main WHERE 

r_data_main.coll_id=r_coll_main.coll_id AND coll_name LIKE '/nara-

cpk/home/maconrad/National_Archives/Federal_Records/RG 266 - Records of the 

Securities and Exchange Commission%'); 

Result count  

47852744 

TimeA Time: 118.867 s TimeB Time: 86.592 s TimeN Time: 2482.763 s 

4.2 Scalability study 

In this study, we created a database consisting of semi-random records stored in two tables 

modeled after the two main tables in the NARA-ICAT database.  We started by creating one 

collection and filling it in with 1M records, and run a query similar to those shown in Table VI.  

Next, we add another collection consisting of 1M records and run a similar query.  And so on 

until we add 100 collections, 1M records in each, or total of 100M records.  Each time we run a 

search query for counting the number of files and their combined size in a random collection.  

Figure 3 (left plot) presents results of this test. 

We conducted another study in which we generated and sequentially added 10 collections of size 

100M records each, or 1B records in total.  After adding a new collection, we run a search query 

similar to the previous test.  Figure 3 (right plot) presents results of this test. 

 

 

Figure 3. XtremeData data analytics appliance scalability study. 

4.3 Analysis 

In most cases, XtremeData dbx data analytics appliance executed queries faster than NARA’s 

database engine.  A few exceptions are queries 6, 7, 8, B and C.  In the case of these queries, 

NARA’s database engine returned results within 2 seconds whereas dbx database engine 

returned results within 10s of seconds.  All these queries involved only a small number of 

records.  One possible explanation is that the query results already are already cashed on the 

NARA database server. 
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Queries that involved joining 2 tables and returning very large number of records (hundreds of 

thousands to millions) were generally executed about two times faster by the dbx database than 

by the NARA database engine. 

Queries that involved joining 3 tables executed up to 28 times faster by the dbx database than by 

the NARA database engine. 

Scalability study shows linear increase in query time as the database size grows, which is ideal 

for this type of analysis. 

5 Future Work 

For the remainder of the project, we plan to investigate GPU-accelerated pattern matching 

algorithms based on regular expression matching.  Such algorithms are key in searching text files 

and databases, deep network packets analysis, computer virus scanners, and bioinformatics 

applications, to name a few areas of potential impact. Existing CPU-based implementations run 

at MB/sec data rates.  Their port to a GPU-based platform, if successful, can run in GB/sec data 

rates range. 

 


