Introduction to GPU
Programming

Volodymyr (VLlad) Kindratenko

Innovative Systems Laboratory @ NCSA

Institute for Advanced Computing
Applications and Technologies (IACAT)

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Part |l

e CUDA C and CUDA API
e Hands-on: reduction kernel

— Reference implementation
— GPU port

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

CUDAC

e CUDA C extends standard C as follows

— Function type qualifiers to specify whether a function
executes on the host or on the device

— Variable type qualifiers to specify the memory
location on the device

— A new directive to specify how a kernel is executed on
the device

— Four built-in variables that specify the grid and block
dimensions and the block and thread indices

— Built-in vector types derived from basic integer and
float types

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Built-in Vector Types

Vector types derived from basic
integer and float types

e charl, char2, char3, char4

* ucharl, uchar2, uchar3, uchar4
* shortl, short2, short3, short4

e ushortl, ushort2, ushort3, ushort4
* intl, int2, int3, int4

e uintl, uint2, uint3 (dim3), uint4
* longl, long2, long3, long4

* ulongl, ulong2, ulong3, ulong4
* longlongl, longlong2

* floatl, float2, float3, float4

* doublel, double2

They are all structures, like this:

typedef struct {
float x,y,z,w;
} float4;

They all come with a constructor
function in the form make_<type
name>, e.g.,

int2 make_int2(int x, int y);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

* dim3 dimBlock(width, height);
* dim3 dimGrid(10); // same as dimGrid(10,0,0)

 myKernel<<<dimGrid, dimBlock>>>();

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Built-in Variables

variable type description

gridDim dim3 dimensions of the grid
blockID unit3 block index within the grid
blockDim dim3 dimensions of the block
threadIdx uint3 thread index within the block
warpSize int warp size in threads

It is not allowed to take addresses of any of the built-in variables
It is not allowed to assign values to any of the built-in variables

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

myKernel<<<10, 32>>>();

__global__ void myKernel()

{

int i = blockldx.x * blockDim.x + threadldx.x;
Cli] = Afi] + B[i];
}

* here
— gridDim.x is 10
— blockDim.x is 32

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Variable Type Qualifiers

Memory | Scope Lifetime
__device int GlobalvVar; global grid | application
__device =~ shared int SharedVar; shared block block
__device = comnstant int ConstantVar; constant gﬁd appﬁcaﬁon

volatile int GlobarVar or SharedVar;

__shared _and __ constant__ variables have implied static storage
__device_, shared and __constant__ variables cannot be defined using

external keyword

__device_ _and _ constant__ variables are only allowed at file scope

__constant__ variables cannot be assigned to from the devices, they are initialized

from the host only

__shared__ variables cannot have an initialization as part of their declaration

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__global___ void myKernel()

{
__shared__ float shared[32];
__device float device[32];
shared[threadldx.x] = device[threadldx.x];
}

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel()

{

extern __shared__ int s_data[];

s_data[threadldx.x] = ...
}

main()

{

int sharedMemSize = numThreadsPerBlock * sizeof(int);
dim3 dimGrid(numBlocks);

dim3 dimBlock(numThreadsPerBlock);

myKernel <<< dimGrid, dimBlock, sharedMemSize >>>();

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Function Type Qualifiers

Executed | Only callable

on the: from the:
__device float DeviceFunc () device device
__global void KernelFunc() device host
__host float HostFunc () host host

__device__and _ global functions do not support recursion, cannot declare
static variables inside their body, cannot have a variable number of arguments
__device functions cannot have their address taken
~_host _and _ device qualifiers can be used together, in which case the

function is compiled for both

__global and host qualifiers cannot be used together

__global function must have void return type, its execution configuration

must be specified, and the call is asynchronous

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__device__int get_global_index(void)

{

return blockldx.x * blockDim.x + threadldx.x;

__global__ void myKernel(int *array)

{

int index = get_global_index();

main()

{..

myKernel<<<gridSize, blockSize>>>(gArray);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Execution Configuration

Function declared as

__global__ void kernel(float* param);
must be called like this:

kernel<<<Dg, Db, Ns, S>>>(param);

where

* Dg (type dim3) specifies the dimension and size of the grid, such that Dg.x*Dg.y equals
the number of blocks being launched;

* Db (type dim3) spesifies the dimension abd size of each block of threads, such that
Db.x*Db.y*Db.z equals the number of threads per block;

» optional Ns (type size_z) specifies the number of bytes of shared memory dynamically
allocated per block for this call in addition to the statically allocated memory

» optional S (type cudaStream_t) specifies the stream associated with this kernel call

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Intrinsic Functions

Supported on the device only
Start with __, asin __sinf(x)

End with

_rn (round-to-nearest-even rounding mode)
_rz (round-towards-zero rounding mode)
_ru (round-up rounding mode)

_rd (round-down rounding mode)

as in __fadd_rn(x,y);

There are mathematical (__log10f(x)), type conversion (__int2float_rn(x)),
type casting (__int_as_float(x)), and bit manipulation (__ffs(x)) functions

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__global__ void myKernel(float *al, float *a2)

{

int index = blockldx.x * blockDim.x + threadldx.x;
al[index] = sin(al[index]);

// faster, but less precise than sin()
a2[index] = sin_rn(a2[index]);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Synchronization and Memory Fencing

Functions
function description
void __ threadfence () wait until all global and shared memory

accesses made by the calling thread become
visible to all threads in the device for global
memory accesses and all threads in the thread
block for shared memory accesses

void Waits until all global and shared memory
__threadfence_block() | 3ccesses made by the calling thread become
visible to all threads in the thread block

void __ syncthreads() Waits until all threads in the thread block have
reached this point and all global and shared
memory accesses made by these threads
become visible to all threads in the block

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__global___ void myKernel(float *al, float *a2)

{
int index = blockldx.x * blockDim.x + threadldx.x;
allindex] = al[index] + a2[index];

__syncthreads();

a2[index] = al[blockDim.x-index-1];

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Thread Block

__syncthreads ()

17

Atomic Functions

function

Description

atomicAdd ()

new = old + val

atomicSub ()

new = old - val

atomicExch ()

hew = val

atomicMin ()

new = min(old, val)

atomicMax ()

new = max(old, val)

atomicInc ()

new = ((old >=val)?0: (old+1))

atomicDec ()

new = (((old==0) | (old > val)) ? val : (old-1))

atomicCAS ()

new = (old == compare ? val : old)

Atomic{And, Or,

Xor} ()

new = {(old & val), (old | val), (old”*val)}

An atomic function performs read-modify-write atomic operation on one 32-bit or one
64-bit word residing in global or shared memory. The operation is atomic in the sense
that it is guaranteed to be performed without interference from other threads.

18

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

__shared__ totalSum;
if (threadldx.x == 0) totalSum = 0;
__syncthreads();

int localVal = pValues[blockldx.x * blockDim.x + threadldx.x];

atomicAdd(&totalSum, 1);
__syncthreads();

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Device Management

function

description

cudaGetDeviceCount ()

Returns the number of compute-capable
devices

cudaGetDeviceProperties ()

Returns information on the compute
device

cudaSetDevice ()

Sets device to be used for GPU execution

cudaGetDevice ()

Returns the device currently being used

cudaChooseDevice ()

Selects device that best matches given
criteria

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Device Management Example

void cudaDevicelnit() {

}

int devCount, device;
cudaGetDeviceCount(&devCount);
if (devCount ==0) {
printf("No CUDA capable devices detected.\n");
exit(EXIT_FAILURE);
}
for (device=0; device < devCount; device++) {
cudaDeviceProp props;
cudaGetDeviceProperties(&props, device);
// If a device of compute capability >= 1.3 is found, use it
if (props.major>1 || (props.major == 1 && props.minor >= 3)) break;
}
if (device == devCount) {
printf("No device above 1.2 compute capability detected.\n");
exit(EXIT_FAILURE);
}

else cudaSetDevice(device);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Memory Management

function description
cudaMalloc() Allocates memory on the GPU
cudaMallocPitch () Allocates memory on the GPU device for 2D

arrays, may pad the allocated memory to
ensure alignment requirements

cudaFree ()

Frees the memory allocated on the GPU

cudaMallocArray ()

Allocates an array on the GPU

cudaFreeArray ()

Frees an array allocated on the GPU

cudaMallocHost ()

Allocates page-locked memory on the host

cudaFreeHost ()

Frees page-locked memory in the host

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Memory Management (Cont.)

function description

cudaMemset () Initializes or sets GPU memory to a value
cudaMemCpy () Copies data between host and the device
cudaMemcpyToArray ()

cudaMemcpyFromArray ()

cudaMemcpyArrayToArray ()

cudaMemcpyToSymbol ()

cudaMemcpyFromSymbol ()

cudaGetSymbolAddress ()

Finds the address associated with a CUDA
symbol

cudaGetSymbolSize ()

Finds the size of the object associated with
a CUDA symbol

23

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example

main()

float *devPtrA, *devPtrB;

cudaMalloc((void**)&devPtrA, N * sizeof(float));
cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMalloc((void**)&devPtrB, N * sizeof(float));

cudaMemset(evPtrB, 0, N * sizeof(float));

// call kernel
myKernel<<<...>>>(devPtrA, devPtrB, N);

cudaMemcpy(B, devPtrB, N * sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(devPtrA);
cudaFree(devPtrB);

}

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Error Handling

All CUDA runtime API functions return an error code. The runtime maintains
an error variable for each host thread that is overwritten by the error code
every time an error concurs.

function description

cudaGetLastError () Returns error variable and resets it to
cudaSuccess

cudaGetErrorString () Returns the message string from an error
code

cudaError_t err = cudaGetLastError();
if (cudaSuccess !=err) {

fprintf(stderr, "CUDA error: %s.\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Sum reduction kernel example

e Source isin ~/tutorial/src4
— sum.c — reference C implementation
— makefile — make file

— sum.cu.reference — CUDA implementation for
reference

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Sum reduction

int main(int argc, char **argv)

{
inti, N=2097152; // vector size

double *A, s = 0.0f;
A = (double*)malloc(N * sizeof(double));
// generate random data
for(i=0;i<N;i++)

A[i] = (double)rand()/RAND_MAX;
s =sum(A, N); // call compute kernel

printf("sum=%.2f\n", s);

free(A); // free allocated memory

}

n
S = ka
k=0

double sum(double* v, int n)

{
inti;
double s = 0.0f;

for (i=0;i<n;i++)
s += v[i];

returns;

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

27

Where do we find parallelism?

15
S = z (%%
k=0

Vo

V2

Vs

Vs

Vs

Ve

V7

Vs

Vo

V1o

V11

V12

Vi3

V1

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

28

Where do we find parallelism?

thread 0
thread 1
thread 6
thread 8

o~ o <t
e} o e
© © ©
[J] (J] (J]
— L - L -
< < <
+— +— +—

N

NRIE
/7
el T
.
([Tl

N/2 additions can
== be done
independently

Tl <
el <
] <
T~ <

J

<]
<

<]
<
\

~
~
~._
~_

\—/uw(—\&—//?—\j//thread 5

'_/O</—
\—/S/—
'_/m</—
'_/\‘(—

29
V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

thread 0
thread 1
thread 4
thread 5

thread 6
thread 8

\

%

N/4 additions can
be done
independently

Tl <
el <

o™
©
©
()
—
<
s
7

/
&
/
;

/

~
~

~L < <
'\—/S/— /u-|</_ r
\/N(—\g—//o{—_»s//thread 2

30
V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

thread 0
thread 1
thread 2
thread 3
thread 4
thread 5
thread 6
thread 8

N/8 additions can
be done
independently

Tl <
el <

—<]
<

~
~

'_/O(—
'_/H(—

31

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Where do we find parallelism?

thread 1
thread 2
thread 3
thread 4
thread 5
thread 6
thread 8

N/16 additions
can be done
independently

'\—/6—\6—//5/_+__§//thread0

32

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

GPU kernel for N<=1024

__global__ void sum (double *v)

{

unsigned int t = threadldx.x;
unsigned int stride;

for (stride = blockDim.x >> 1; stride > 0; stride >>= 1)
{
__syncthreads();
if (t < stride)
v[t] += v[t+stride];

sum<<<1, N/2>>>(a);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

33

The rest of the code

double *devPtrA; // allocate memory, copy data
cudaMalloc((void**)&devPtrA, N * sizeof(double));
cudaMemcpy(devPtrA, A, N * sizeof(double), cudaMemcpyHostToDevice);

sum<<<1, N/2>>>(devPtrA); // call compute kernel

cudaError_t err = cudaGetLastError(); // check for errors

if (cudaSuccess != err)

{
fprintf(stderr, "CUDA error: %s.\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);

}

// get results, free memory
cudaMemcpy(&s, devPtrA, sizeof(double), cudaMemcpyDeviceToHost);
cudaFree(devPtrA);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Problems with this implementation

* N<=1024

— A thread block may not have more than 512
threads

e |nefficient

— Data is stored in global memory which has very
high access latency

* N must be a power of 2

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Expanding to multiple thread blocks

thread 0

o
©
©
(O]
—_
e
s

thread 1

\

)

o
©
©
(O]
—_
e
s

\

—
©
©
()
o
=
+—

\

thread 2

thread 3

ol <
T <

/

)

)

"

| <
] <

i
e

"

+
1

Y

<

<

N/2 additions can
== be done
independently

3

i
&

/
i

e

~ < <
~ < <
'\—/N(—\g—//?—\'_»s//thread 2

Block O

\.

3
5

/
/
x

6

< [T

/

Block

/

'\-/\.(—

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

36

Eliminating global memory access latency

thread 0
thread 1
thread 2
thread 3
thread O
thread 1
thread 2
thread 3

N/2 additions can

| <
] <

T~ <
T =

s
s
~ | s
~ s

be done
independently
\/8 \/9 &10 &11 &12 &13 &<14 &<15
Store partial sums
0 1 2 3 0 1) 3 in the per-block
shared memory

]
]
o
.
.
.
]
]

Block 1

37
V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Expanding to multiple thread blocks

N on o o on
S

N/4 additions can
be done
independently

2

0

Block O Block 1

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Expanding to multiple thread blocks

thread 0
thread 1
thread 2
thread 3
thread O
thread 1
thread 2
thread 3

N/8 additions can
+ be done
independently

Block O Block 1

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Final sum reduction kernel

__global__ void sum(double *v)

{

extern double __shared___ sd[];
unsigned int tid = threadldx.x;

perform first level of

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x; reduction, reading from

global memory, writing to

sd[tid] = v[i] + v[i+blockDim.x];
__syncthreads();

{
if (tid < s)
sd[tid] += sd[tid + s];
__syncthreads();

L} /

for (unsigned int s = blockDim.x/2; s > 0; s >>= 1)\
4

| shared memory

do reduction in shared memory

|

[if (tid == 0) v[blockldx.x] = sd[0];]‘r

write result for this block to global mem

40

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Are we done yet?

We started with this

Vo | Vi | V2| V3| Vs | Vs | Ve| Vs | Vs | Vo |Viwo| V1| V12| V3| Vs | Vss
 And ended with this
Vo | Vi

where vo and v: are partial sums computed by individual
thread blocks, stored in global memory, and they still need
to be added

The final addition can be done by running the same kernel
on this reduced data set

41

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Modified host code

int threads = 64;

int old_blocks, blocks = N / threads / 2;
blocks = (blocks == 0) ? 1 : blocks;
old_blocks = blocks;

while (blocks > 0) // call compute kernel

{

sum<<<blocks, threads, threads*sizeof(double)>>>(devPtrA);
old_blocks = blocks;
blocks = blocks / threads / 2;

b

if (blocks == 0 && old_blocks '= 1) // final kernel call, if still needed
sum<<<1, old_blocks/2, old_blocks/2*sizeof(double)>>>(devPtrA);

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Example run

« [kindr@ac src4]S ./sum_cpu

e Running CPU sum for 2097152 elements
* sum=1048443.09

* sec=0.006771 GFLOPS =0.309

2,097,152 values

o [kindr@ac src4]S ./sum_gpu

* Running GPU sum for 2097152 elements
* Grid/thread dims are (16384), (64)

e Grid/thread dims are (128), (64)

e Grid/thread dims are (1), (64)

e sum=1048443.09 128 values
 sec=0.000389 GFLOPS =5.391

16,384 values

1 value

43
V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

Lab/Homework Exercises

e Exercise 2: Modify reduction example to
eliminate multiple calls to the kernel

— hint: use atomic add

V. Kindratenko, Introduction to GPU Programming (part lll), December 2010, The American University in Cairo, Egypt

