
National Center for Supercomputing Applications 
University of Illinois at Urbana-Champaign 

Accelerating Cosmological 
Data Analysis with �

Graphics Processors�

Dylan W. Roeh 
Volodymyr V. Kindratenko 

Robert J. Brunner 



Presentation Outline 

•  Motivation 
•  Digital sky surveys 

•  Angular Correlation function 
•  Concept 
•  Algorithm 

•  GPU implementation 
•  Suitability of GPUs 
•  Bin computation kernel 
•  Histogram kernel 

•  Results 
•  Performance on a single node 
•  Multi-node scaling 
•  Comparison with FPGAs 

•  Conclusions 

National Center for Supercomputing Applications 



Digit{ized|al} Sky Surveys 

1977-1982 
First CfA Redshift 

Survey 

spectroscopic 
observations of 1,100 

galaxies 

1985-1995 
Second CfA Redshift 

Survey 

spectroscopic 
observations of 18,000 

galaxies 

2000-2005 
Sloan Digital Sky 

Survey I 

spectroscopic 
observations of 

675,000 galaxies 

2005-2008 
Sloan Digital Sky 

Survey II 

spectroscopic 
observations of 

869,000 galaxies 

2011- 
The Dark Energy 

Survey 

spectroscopic 
observations of 

~10,000,000 galaxies 

2014- 
Large Synoptic Survey 

Telescope  

spectroscopic 
observations of Billions 

of galaxies 

1K 

10K 

100K 

1M 

10M 

100M 

1B 

10B 

Sources:  
http://www.cfa.harvard.edu/~huchra/zcat 
http://zebu.uoregon.edu/~imamura/123/images 
http://www.sdss.org 
http://www.lsst.org/lsst 
http://www.darkenergysurvey.org/ 

National Center for Supercomputing Applications 



Example Analysis: Angular Correlation 

•  Two-point angular correlation 
function (TPACF), ω(θ), is the 
frequency distribution of angular 
separations θ between celestial 
objects in the interval (θ, θ + δθ) 

•  θ is the angular distance between two 
points 

•  Red (random data) are, on average, 
randomly distributed, black 
(observed data) are clustered 

•  random points: ω(θ)=0 
•  observed points: ω(θ)>0 

•  TPACF can vary as a function of 
angular distance, θ (blue circles) 

•  random: ω(θ)=0 on all scales 
•  observed: ω(θ) is larger on smaller 

scales 

National Center for Supercomputing Applications 



observed data random dataset  1 random dataset  nR 

TPACF 

Two Point Angular Correlation Function 

… 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.01  0.1  1  10  100  1000  10000  100000 

ω
(θ

) 

θ(arcmin) 

National Center for Supercomputing Applications 



TPACF Algorithm 

•  Modified Landy & 
Szalay estimator 

•  Angular distance 

•  Bin edges 

•  Computing DD/DR/
RR counts 

pi 

pj 

θ 

θ0 θ 1 θ 2 θ 3 θ 4 θ 5 

National Center for Supercomputing Applications 



TPACF Algorithm 

•  Error estimation via jackknife re-sampling 
•  This technique first divides the area of interest into multiple 

subsamples, after which, single subsamples are 
systematically removed, one-at-a-time, and the correlation 
function is estimated for the remaining subsamples 

•  In practice, this is implemented by labeling each observed 
object with the sample number from which it is removed 
and updating only those histograms of angular separation, 
DD(θ) and DR(θ), that do not belong to the given sample 

National Center for Supercomputing Applications 



TPACF Algorithm Implementation 
// pre-compute bin boundaries, binb 

loadObservedData(data); 
computeDD(data, npd, data, npd, 1,binb, nbins, njks, DD); 

for (i = 0; i < random_count; i++) // loop through random data files 
{ 
        loadRandomData(random[i]); 
        computeRR(random[i], npr[i], random[i], npr[i], 1, binb, nbins, njks, RRS);  
        computeDR(data, npd, random[i], npr[i], 0, binb, nbins, njks, DRS);  
} 

// compute w 
for (k = 0; k < nbins; k++)  {  
        ω[k] = (random_count * 2*DD[k] - DRS[k]) / RRS[k] + 1.0; 
} 

National Center for Supercomputing Applications 



TPACF Algorithm Implementation 
void compute{DD|DR|RR}(struct cartesian *data1, int n1, struct cartesian *data2, int n2, 
                                              int doSelf, int nbins, double *binb, int njk, long long **data_bins) 
{ 
    if (doSelf) { n2 = n1; data2 = data1; }                  // setup pointers for Self-compute 

    for (i = 0; i < ((doSelf) ? n1-1 : n1); i++) {             // loop over points in the first set 
        double xi = data1[i].x;                                              // get point from first dataset 
        double yi = data1[i].y; 
        double zi = data1[i].z; 
        int jk = data1[i].jk; 

        for (j = ((doSelf) ? i+1 : 0); j < n2; j++) {                        // loop in second dataset 
            double dot = xi * data2[j].x + yi * data2[j].y + zi * data2[j].z;     // dot product 

            int indx, k = nbins;                                                         // find bin it belongs to 
            if (dot >= binb[0]) indx = 0;                      // eliminate those outside the range 
            else {  while (dot > binb[k]) k--; indx = k+1; }                   // sequential search 

            for (l = 0; l < njk; l++) 
                if (l != jk) data_bins[l][indx] += 1;                            // update all but jk bins 
        } 
    } 
} 

National Center for Supercomputing Applications 



Suitability of GPUs 

•  The computation of histogram bin counts is highly parallel 
with substantial data reuse opportunities 
•  Each point is used ND times during invocation of the kernel 
•  Each pair of points can be treated independently, allowing O(ND

2) 
parallel calculations 

•  Assuming that a group Nt~100 points can be pre-loaded and used Nt 
times (Nt<<ND) in the dot product calculation, 8(Nt+3) load/store 
operations are required per 5Nt floating-point operations, resulting in 
8(Nt+3)/(5Nt)≈1.6 bytes per flop (assuming double-precision) 

•  This rate is comparable to the peak rate of ~1.8 bytes per flop on 
NVIDIA GeForce GTX280GPU (assuming double-precision) 

National Center for Supercomputing Applications 



GPU Implementation Overview 

•  The algorithm is broken up into two major kernels 
•  The first kernel takes two sets of 3D vectors, computes the dot product 

of every pair of vectors, and writes histogram bin assignments to 
memory 

•  The second kernel reads bin assignments from memory and constructs 
a histogram 

•  This actually uses a third kernel; a helper kernel to compile sub-histograms 
in device memory 

•  Histogram kernel is only called on elements with the same 
jackknife index. By doing this we can reconstruct the full 
histogram and all jackknife histograms without many 
redundant calls to the histogram kernel. 

National Center for Supercomputing Applications 



Difficulties 

•  Computing a bin assignment from the result of a dot product 
•  Direct bin index computation involves computing logarithm and arccosine, 

which is slow  
•  Binary and linear search based bin index computation suffer form branch 

divergence 

•  Histogram algorithm 
•  Avoiding race conditions in global memory requires constructing per-block 

histograms 
•  Avoiding race conditions within shared memory is only possible by creating 

per-thread histograms in shared memory 
•  Must be careful not to exceed the maximum shared memory usage 
•  Some trickery is required to avoid bank conflicts 

National Center for Supercomputing Applications 



Bin Computation Kernel 

•  This kernel takes in two lists of 
vectors and computes the dot 
product of every pair of vectors, 
and then each dot product's bin 
assignment. The bin assignments 
are then written to a grid in device 
memory 

•  It is assumed that the lists both have 16,384 
elements, but this is not necessary for the 
algorithm in general 

•  Each block has 128 threads, and 
each thread computes and outputs 
128 bin assignments 

•  Number of bins is assumed to be 
small enough that 4 bin 
assignments can be packed in an 
integer 

!"#$%&'()*+$

!"#$%&'()*+$

,%+*$-(-%./$

0(12)($-(-%./$

!34$

%&'()*+$

!34$

%&'()*+$

5$ !34$

%&'()*+$

!34$

%&'()*+$

!34$

%&'()*+$

5$

!34$

%&'()*+$

67%)8+$ %9$ !34$ *:.(;0+$

<
.2
0
=
2-

>/
?
!
3
4
$

<.20=2->@?!34$
;!$ ;3$ 5$ ;!34$

&!$

&3$

5$

&!34$

&3A;!$ &3A;3$
5

&3A;!34$

B%.8$

0%C($

&/$

+2C<7($

*:.(;0$

National Center for Supercomputing Applications 



Bin Computation Kernel 

•  A linear search proves to be the best method for computing 
a bin assignment given a dot product 

•  Note that, when computing DD or RRi, it suffices to 
compute bin assignments for fewer than half of the pairs 
•  Doing this introduces branch divergence only in blocks for which 

blockIdx.x = blockIdx.y; the rest must either compute all bin 
assignments or no bin assignments 

•  This also removes troubling elements on the main diagonal, which tend 
to be incorrectly binned in single precision implementations 

•  Note that we must reserve a histogram bin for “ignored” elements 

National Center for Supercomputing Applications 



Histogram Kernel 

•  The histogram kernel (based on NVIDIA’s whitepaper) functions by first 
computing per-thread sub-histograms, then compiling those into per-block 
sub-histograms and writing them to global memory 

•  Following this, a small helper kernel compiles the per-block sub-histograms 
into a smaller number of sub-histograms if necessary. Compiling the small 
number of remaining sub-histograms into a full histogram is left to the CPU 

•  The helper kernel can be eliminated on Compute Capability 1.1 or greater GPUs with the 
use of atomic memory operations, but doing so results in some loss of performance 

•  The per-thread sub-histograms must be stored in shared memory. Given that, 
we want to have a reasonable number of threads without putting overly harsh 
restrictions on the number of bins or maximum capacity of a given bin 

•  Using one byte to represent a histogram bin allows each thread to histogram up to 255 
elements 

•  Doing this we can achieve 64 bins with 192 threads without over-running shared memory 
•  64 is plenty for this application. 128 bins could be achieved with the same algorithm, but 

would require a reduction to 64 threads 

National Center for Supercomputing Applications 



Jackknife Resampling 

•  Part of the goal of this implementation was to include jackknife re-sampling, in 
which we compute not only the full histogram for ω(θ), but also a number of 
sub-histograms (jackknives) which are to be used in error bounds 

•  Each element is removed from precisely one jackknife 

•  The obvious implementation is to add each element to the full histogram as 
well as every jackknife except that which it is removed from 

•  Unfortunately, this requires either far too many bins (e.g., 330 if 30 bins and 10 
jackknives are used, as in the CPU version) or many redundant calls to the histogram 
kernel 

•  An efficient solution is to use “inverse” jackknives. The ith inverse jackknife is 
the histogram of elements which are removed from the ith jackknife 

•  The full histogram and every jackknife can be easily reconstructed 
•  Every element goes through the histogram kernel precisely once 
•  May introduce some calls to the histogram kernel which are not necessary without 

jackknife re-sampling, but the histogram kernel does not have much overhead, and the 
number of extra calls is relatively small 

National Center for Supercomputing Applications 



Singe/double-precision Issue 

•  The double-precision results for 
the GPU and CPU 
implementations coincide 

•  The single-precision GPU 
results are off for angular 
separations below 
approximately 4 arcminutes 

•  The numerical precision of 
single-precision floating-point 
arithmetic is not sufficient to 
perform the distance 
calculations for angular 
separations below 
approximately 1 arcminute 

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

"#"$% "#$% $% $"% $""% $"""% $""""%

!
"!
#$

!"%&'()*#$

*+,%-./012!3425.-.6/%

*+,%768912!3425.-.6/%

:+,%768912!3425.-.6/%

National Center for Supercomputing Applications 



Performance on a Single GPU 

•  Execution time •  Speedup 

National Center for Supercomputing Applications 



Multi-GPU MPI Implementation 

•  GPU cluster •  Performance scaling 

HP xw9400 
workstation with 
NVIDIA Quadro Plex 
Model IV modules 

Lu
st

re
 fi

le
 

sy
st

em
 

se
rv

er
s 

C
lu

st
er

 m
an

ag
er

  
an

d 
Lo

gi
n 

se
rv

er
 

Netgear Prosafe 24-
port Gigabit  Ethernet 
switch 

24-port Topspin 120 
Server InfiniBand 
switch  

16
 c

lu
st

er
 c

om
pu

te
 n

od
es

 

National Center for Supercomputing Applications 



Comparing with FPGAs 

National Center for Supercomputing Applications 

Measured features/ 
parameters 

SRC-6 host 
2.8 GHz Xeon 

SRC-6 dual-
MAP 

SGI Altix host 
1.4 GHz Itanium 2 

RC100 blade 
# CPUs 2 2 

# FPGAs 4 2 
# of compute 

engines 
1 17 2 4 

DD time (s) 219.5 3 226.6 49.7 
DR+RR time (s) 84,354.3 880.3 47,598.6 4,975.3 
Load/convert (s) 20.3 20.7 28.4 27.5 

Total (s) 84,594.1 904 47,853.6 5,052.5 
Overall Speedup 1.0× 93.5× (1) 

52.9× 1.0× 9.5× (2) 

(1) V. Kindratenko, R. Brunner, A. Myers, Dynamic load-balancing on multi-FPGA systems: a case study,  
     In Proc. 3rd Annual Reconfigurable Systems Summer Institute - RSSI'07, 2007. 
(2) V. Kindratenko, R. Brunner, A. Myers, Mitrion-C Application Development on SGI Altix 350/RC100,  
     In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM'07, 2007. 



Conclusions 

•  Significant performance improvements achieved 
on GeForce GTX 280 GPU as compared to a 2.4 
GHz AMD Opteron-based system 
•  225× speedup for single-precision implementation 
•  80× speedup for double-precision implementation 
•  Work that requires days on a PC, or hours on a small 

cluster, now can be done in minutes on a GPU! 

•  Code scales, to a limit, on a multi-GPU system 
using MPI 

•  Programming effort equals to one semester of a 
good graduate student working part-time 

National Center for Supercomputing Applications 



Acknowledgements 

•  This work has been supported by the NSF STCI (OCI 08-10563) and 
NASA AISR (NNG06GH15G) programs.  The GPU cluster used in this 
work is funded by the NVIDIA CUDA Center of Excellence at the 
University of Illinois and the NSF CRI (CNS 05-51665) grant under 
the CRI program.  The cluster is managed by the Innovative Systems 
Laboratory (ISL) at the National Center for Supercomputing 
Applications (NCSA) as part of the Institute for Advanced Computing 
Applications and Technologies (IACAT). 

National Center for Supercomputing Applications 


