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MIMD Lattice Computation (MILC) 
 The MIMD Lattice Computation (MILC) code, a Quantum Chromody-

namics (QCD) application used to simulate four-dimensional SU(3) lattice 

gauge theory, is one of the largest compute cycle users at the national su-

percomputing centers. The code is scalable to thousands of processors, 

however its per-processor peak floating-point performance remains low 

[see the performances in the table below]. 

 

 We implemented the conjugate gradient (CG) solver, which is the most 

time-consuming part of MILC, to run on a GPU cluster using the QUDA 

framework[1][2][3] developed at Boston University. 

 

 We also implemented other time-consuming parts of MILC to run on 

GPUs, such as the fermion force, gauge force and fat link computation. 

 

 

Data layout, Staggered Dslash 
Operator, and CG Solver 

 The most expensive operation in the CG 

solver is the dslash operation 

 Data for spinors and gauge links is rear-

ranged on the host before it is copied to the 

device memory to enable coalesced memory 

access 

 We have implemented the following flavors 

of the CG solver [4][5] 

 Single Precision/Double precision/Half 

precision/Mixed precision 

 8/12/18 reconstruction method for the 

long gauge link 

 Multi Shift (multi mass) solver 

 

Multi-GPU CG Implementation 

 The 4D lattice is partitioned in the time dimension, each node computes T 

slices with total n*T slices 

 Three slices in both forward and backward directions are needed by the 

neighbors in order to compute new spinors 

 The dslash kernel is split into the interior kernel, which computes the in-

ternal slices (2<t<T-3) of sub-lattice and the space contribution of the 

boundary sub-lattices, and the exterior kernel, which computes the time di-

menstion contribution for the boundary sub-lattice. The exterior kernel de-

pends on the data from the neighbors. 

 The interior kernel and the communication of boundary data can be over-

lapped using CUDA streams 

 Best performance is achieved when the interior kernel runs longer than the 

communication, i.e., the sub-lattice per GPU is large enough  

 

Multi-GPU CG Performance 

 Quantum Electrodynamics (QED) application. 

 CG is the dominating part. Requires DP accuracy, which can be 

achieved using mixed-precision in GPU implementation. 

 Calculations are done on the DIRAC GPU cluster at NERSC 

 Cluster node consists of 8 Intel Nehalem 2.4 Ghz CPU cores and one 

Nvidia C2050 GPU 

 Mixed precision GPU performance is up to 57 GFLOPS 

 Compared with an 8-core CPU node, the GPU speedup is up to 9x 

 Multi-node speedup is close to 6x, compared with the same number of 

nodes without GPUs, using GPU and only one out of 8 CPU cores/node. 

NVIDIA Fermi architecture 
 

 Fermi architecture (C2050) 

 14 Streaming Multiprocessors,  

each containing 32 Streaming Processors 

 At 1.15 GHz this provides 

 1,030 GFLOPS (SP) 

 515 GFLOPS (DP) 

 384-bit interface to off-chip 

GDDR5 memory 

 3.0 GB without ECC 

 2.6 GB with ECC  

 144 GB/s bandwidth 

 PCIe gen 2 interface to the host 

 8 GB/s bandwidth 

 

 CUDA programming model 

 Programs are composed of host code 

and GPU kernels 

 The compute-intensive part (GPU ker-

nel) is executed on the GPU 

 The rest of code is executed on the CPU 

 GPU kernel is executed by many light-weight threads organized in 

thread blocks launched on a grid 

 Each thread has a unique thread ID within the thread block 

 Each thread block has a unique block ID within the grid 

 Individual GPUs can be  controlled by different pthreads or MPI proc-

esses with each process controlling one GPU. We use the latter ap-

proach. 

Fat Link/Gauge Force/Fermion Force 
GPU Performance 
 

 Fat link, gauge force and fermion force 

are also ported to single GPU. Some 

preliminary results are shown in the ta-

ble 

 

 

 Multi-GPU version of fat link comput-

ing is also done. The achieved speedup 

is 9x compared to a quad-core CPU. 

 

Future work 
 Partitioning over the space dimension to enable computation using lattices with 

a spatial dimension greater than 48 

 Multi-GPU version of fermion force/gauge force computing 
 Porting HISQ action force terms to single and multiple GPUs 
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