
Multi-GPU Implementation of MILC using QUDA Framework

Guochun Shi†, Steven Gottlieb‡†, Aaron Torok‡, Volodymyr Kindratenko†
†National Center for Supercomputing Applications, University of Illinois, Urbana, IL, USA

‡Department of Physics, Indiana University, Bloomington, IN, USA

Acknowledgements

This work is sponsored by the Institute for Advanced Computing Applications and Technologies (IACAT) and utilized the AC cluster at the National Center for Supercomputing Ap-

plications at the University of Illinois. This work is also supported by grants PHY-0555234 (NSF) DE-FC02-06ER41443 & FG02-91ER 40661 (DOE). This work in part is based on

the MILC collaboration’s public lattice gauge theory code. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Of-

fice of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

MIMD Lattice Computation (MILC)
 The MIMD Lattice Computation (MILC) code, a Quantum Chromody-

namics (QCD) application used to simulate four-dimensional SU(3) lattice

gauge theory, is one of the largest compute cycle users at the national su-

percomputing centers. The code is scalable to thousands of processors,

however its per-processor peak floating-point performance remains low

[see the performances in the table below].

 We implemented the conjugate gradient (CG) solver, which is the most

time-consuming part of MILC, to run on a GPU cluster using the QUDA

framework[1][2][3] developed at Boston University.

 We also implemented other time-consuming parts of MILC to run on

GPUs, such as the fermion force, gauge force and fat link computation.

Data layout, Staggered Dslash
Operator, and CG Solver

 The most expensive operation in the CG

solver is the dslash operation

 Data for spinors and gauge links is rear-

ranged on the host before it is copied to the

device memory to enable coalesced memory

access

 We have implemented the following flavors

of the CG solver [4][5]

 Single Precision/Double precision/Half

precision/Mixed precision

 8/12/18 reconstruction method for the

long gauge link

 Multi Shift (multi mass) solver

Multi-GPU CG Implementation

 The 4D lattice is partitioned in the time dimension, each node computes T

slices with total n*T slices

 Three slices in both forward and backward directions are needed by the

neighbors in order to compute new spinors

 The dslash kernel is split into the interior kernel, which computes the in-

ternal slices (2<t<T-3) of sub-lattice and the space contribution of the

boundary sub-lattices, and the exterior kernel, which computes the time di-

menstion contribution for the boundary sub-lattice. The exterior kernel de-

pends on the data from the neighbors.

 The interior kernel and the communication of boundary data can be over-

lapped using CUDA streams

 Best performance is achieved when the interior kernel runs longer than the

communication, i.e., the sub-lattice per GPU is large enough

Multi-GPU CG Performance

 Quantum Electrodynamics (QED) application.

 CG is the dominating part. Requires DP accuracy, which can be

achieved using mixed-precision in GPU implementation.

 Calculations are done on the DIRAC GPU cluster at NERSC

 Cluster node consists of 8 Intel Nehalem 2.4 Ghz CPU cores and one

Nvidia C2050 GPU

 Mixed precision GPU performance is up to 57 GFLOPS

 Compared with an 8-core CPU node, the GPU speedup is up to 9x

 Multi-node speedup is close to 6x, compared with the same number of

nodes without GPUs, using GPU and only one out of 8 CPU cores/node.

NVIDIA Fermi architecture

 Fermi architecture (C2050)

 14 Streaming Multiprocessors,

each containing 32 Streaming Processors

 At 1.15 GHz this provides

 1,030 GFLOPS (SP)

 515 GFLOPS (DP)

 384-bit interface to off-chip

GDDR5 memory

 3.0 GB without ECC

 2.6 GB with ECC

 144 GB/s bandwidth

 PCIe gen 2 interface to the host

 8 GB/s bandwidth

 CUDA programming model

 Programs are composed of host code

and GPU kernels

 The compute-intensive part (GPU ker-

nel) is executed on the GPU

 The rest of code is executed on the CPU

 GPU kernel is executed by many light-weight threads organized in

thread blocks launched on a grid

 Each thread has a unique thread ID within the thread block

 Each thread block has a unique block ID within the grid

 Individual GPUs can be controlled by different pthreads or MPI proc-

esses with each process controlling one GPU. We use the latter ap-

proach.

Fat Link/Gauge Force/Fermion Force
GPU Performance

 Fat link, gauge force and fermion force

are also ported to single GPU. Some

preliminary results are shown in the ta-

ble

 Multi-GPU version of fat link comput-

ing is also done. The achieved speedup

is 9x compared to a quad-core CPU.

Future work
 Partitioning over the space dimension to enable computation using lattices with

a spatial dimension greater than 48

 Multi-GPU version of fermion force/gauge force computing
 Porting HISQ action force terms to single and multiple GPUs

References
[1] M. A. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, "Solving Lattice QCD systems of equa-

tions using mixed precision solvers on GPUs" (2009), arXiv:0911.3191 [hep-lat]

[2] R.Babich, M.A.Clark, B.Joό, “Parallelizing the QUDA Library for Multi-GPU Calculations in Lattice

Quantum Chromodynamics”, Proceedings of the 22nd Annual International Conference for High Perform-

ance Computing, Networking, Storage, and Analysis 2010 (SC10)

[3] http://lattice.bu.edu/quda/

[4] G. Shi, S. Gottlieb, A. Totok, V. Kindratenko, “Accelerating Quantum Chromodynamics Calculations

with GPUs”, 2010 Symposium on Application Accelerators in High-Performance Computing

(SAAHPC10)

[5] S.Gottlieb, G.Shi, A.Torok, V.Kindratenko, “Quda programming for staggered quarks”, In Proc.

XXVIII International Symposium on Lattice Field Theory (Lattice 2010), Villasimius, Sardinia, June 2010

