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MIMD Lattice Computation (MILC) Data layout, Staggered Dslash
. The MIMD Lattice Computation (MILC) code, a Quantum Chromody- Ope ratOr, and CG Solver

namics (QCD) application used to simulate four-dimensional SU(3) lattice
gauge theory, 1s one of the largest compute cycle users at the national su-
percomputing centers. The code 1s scalable to thousands of processors,
however i1ts per-processor peak floating-point performance remains low
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NVIDIA Fermi architecture

. Fermi architecture (C2050) |' e
. 14 Streaming Multiprocessors, — Diepach U
cach containing 32 Streaming Processors
. At 1.15 GHz this provides
. 1,030 GFLOPS (SP)
. 515 GFLOPS (DP)
. 384-bit interface to off-chip
GDDRS memory
. 3.0 GB without ECC
. 2.6 GB with ECC
. 144 GB/s bandwidth
. PCle gen 2 imterface to the host

. 8 GB/s bandwidth

Multi-GPU CG Implementation
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. The 4D lattice 1s partitioned in the time dimension, each node computes T
slices with total n*T slices

Interconnect Network )

. CUDA programming model

. Programs are composed of host code S e : ] . :
dgGPU kernel P | o o . Three slices 1n both forward and backward directions are needed by the
an ernels _ _ _ . . .
Fermi Streaming Multiprocessor (SM) nelgthl‘S 1n OI’dCI‘ to COmPUte ncw SplIlOI‘S

. The compute-intensive part (GPU ker-
nel) 1s executed on the GPU
. The rest of code 1s executed on the CPU
. GPU kernel 1s executed by many light-weight threads organized in
thread blocks launched on a grid
. Each thread has a unique thread ID within the thread block
. Each thread block has a unique block ID within the grid
. Individual GPUs can be controlled by different pthreads or MPI proc-
esses with each process controlling one GPU. We use the latter ap-
proach.

. The dslash kernel is split into the interior kernel, which computes the in-
ternal slices (2<t<T-3) of sub-lattice and the space contribution of the
boundary sub-lattices, and the exterior kernel, which computes the time di-
menstion contribution for the boundary sub-lattice. The exterior kernel de-
pends on the data from the neighbors.

. The interior kernel and the communication of boundary data can be over-
lapped using CUDA streams

. Best performance 1s achieved when the interior kernel runs longer than the
communication, 1.€., the sub-lattice per GPU 1s large enough
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. Quantum Electrodynamics (QED) application.

. CG 1s the dominating part. Requires DP accuracy, which can be
achieved using mixed-precision in GPU implementation.

. Calculations are done on the DIRAC GPU cluster at NERSC

. Cluster node consists of 8 Intel Nehalem 2.4 Ghz CPU cores and one
Nvidia C2050 GPU
. Mixed precision GPU performance is up to 57 GFLOPS
. Compared with an 8-core CPU node, the GPU speedup 1s up to 9x
. Multi-node speedup i1s close to 6x, compared with the same number of
nodes without GPUs, using GPU and only one out of 8 CPU cores/node.

Fat Link/Gauge Force/Fermion Force
GPU Performance

. Fat link, gauge force and fermion force [T
178

are also ported to single GPU. Some Fat link
preliminary results are shown in the ta-  Gaugeforce 208
ble Fermion force 111

GPU performance in single precisionin GTX280

. Multi-GPU version of fat link comput- #ofnodes 2 |4 |8 |16 |
2.2 2.2 2.1

ing 1s also done. The achieved speedup oo 2.2

. (Gflops/CPU)

1s 9x compared to a quad-core CPU. PGy 19,9 18.8 17 11.4
Sl 9.0 8.5 7.7 5.4

F Utu re Wo rk Fatlink computationin multi-GPU and CPU in double precision

. Partitioning over the space dimension to enable computation using lattices with
a spatial dimension greater than 48

. Multi-GPU version of fermion force/gauge force computing

. Porting HISQ action force terms to single and multiple GPUs
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